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Chapter 1

Introduction

1.1 Biometrics

In a modern world, there are more and more occasions in which our identity
must be reliably proved. For example, bank transaction, airport check-in, gate-
way access, computer login, etc., all such applications are related to privacy or
security. But what is our identity? Most often it is a password, a passport, or a
social security number. The link between such measures and a person, however,
can be weak, as they are constantly under the risk of being lost, stolen, or forged.
When the consequence of impostor attack becomes increasingly disastrous, the
safety of the traditional identification approaches is brought under question.

Biometrics, the unique biological or behavioral characteristics of a person,
is one of the most popular and promising alternatives to solve the secure iden-
tification problem. Typical examples are face, fingerprint, iris, speech, and
signature recognition. From the user point of view, biometrics is convenient
as people always carry it with them, and reliable as it is virtually the only
form of authentication that ensures the physical presence of the user. For these
reasons, biometrics has been an active research topic for decades. For an de-
tailed review, see [74], [133]. This thesis, again, focuses on the interesting topic
of biometrics, using it as the security solution for a specific application, and
exploring interrelated research areas, like computer vision, image processing,
pattern classification, that are relevant within this context.
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1.2 Background

This work is carried out under the larger context of Freeband project PNP2008
(Personal Network Pilot) of the Netherlands [53], which aims to develop a user
centric ambient communication environment. Personal Networks (PN) is a new
concept based on the following trends:

• People possess more and more electronic devices that have networking
functionality, enabling the device to share content, data, applications,
and resources with other devices, and to communicate with the rest of the
world.

• In the various living and working domains of the user (home, car, office,
workplace, etcetera), clusters of networked devices (private networks) ap-
pear.

• When people are on the move, they carry an increasing number of elec-
tronic devices that communicate using the public mobile network. As such
devices in the users personal operating space become capable of connecting
to each other, they form a Personal Area Network (PAN).

A personal network is envisaged as the next step in achieving unlimited
communication between people’s electronic devices. It comprises the technology
needed to interconnect the various private networks of a single user seamlessly,
at any time and at any place, even if the user is highly mobile. An illustration
of the PN is shown in Fig. 1.1.

Containing a lot of personal information, the PN puts forward high security
requirements. The mobile personal device (MPD), which links the user and the
network in mobile situations, must be equipped with a reliable and at the same
time user-friendly user authentication system. This work, therefore, concen-
trates on establishing a secure connection between the user and the network,
via biometric authentication on a MPD in the personal network.

1.3 Requirements

The requirements of biometric authentication for the PNP application can be
categorized in three important aspects: security, convenience, and complexity.

1. Security
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Figure 1.1: The personal network (PN) [53].

Security is the primary reason of introducing biometric authentication into
the PN. There are two types of authentication in the MPD scenarios: au-
thentication at logon time and at run time. Compared to the conventional
logon time authentication, the run time authentication is equally impor-
tant because it can prevent unauthorized users from taking an MPD in
operation and accessing confidential user information from the PN.

To quantify the biometric authentication performance with respect to se-
curity, the false acceptance rate (FAR) is used. The FAR is the measure
of security, specifying the probability that an imposter can use the device.
The FAR of a traditional PIN (personal identification number) method is
10−n, where n is the number of digits in PIN. At logon time, biometric
authentication can be combined with a PIN to further reduce the FAR.
At run time, it is not practical to use a PIN any more, and the biometric
authentication system should have a sufficiently low FAR itself.

2. Convenience

The false rejection rate (FRR), which specifies the probability that the
authentic user is rejected, is closely related to user convenience. A false
rejection will force the user to re-enter biometric data, which may cause
considerable annoyance. This leads to the requirement of a low FRR of

3



the biometric authentication system.

Furthermore, in terms of convenience, a much higher degree of user-
friendliness can be achieved if the biometric authentication is transparent,
which means that the authentication can be done without explicit user
actions. Transparency should be also considered as a prerequisite for the
authentication at run time, because regularly requiring a user who may
be concentrating on a task to present biometric data is neither practical
nor convenient.

3. Complexity

Generally speaking, a mobile device has limited resources of computa-
tion. The biometric authentication on the MPD, therefore, must have
low complexity with respect to both hardware and software. When the
authentication has to be ongoing, the requirements becomes even more
strict due to the constantly ongoing computation.

Because the MPD operates in the PN, it offers the possibility that bio-
metric templates be stored in a central database and that the authentica-
tion is done in the network. Although the constraints on the algorithmic
complexity become much less stringent, the option brings a higher secu-
rity risk. Firstly, when biometric data has to be transmitted over the
network it is vulnerable to eavesdropping [13]. Secondly, the biometric
templates need to be stored in a database and are vulnerable to attacks
[98]. These are problems difficult to solve. Conceptually, it is also prefer-
able to make the MPD authentication more independent of other parts of
the PN. Therefore, it is still required that the biometric authentication be
done locally on the MPD. More specifically, the hardware (i.e. biometric
sensor) should be inexpensive, and the software (i.e. algorithm) should
have low computational complexity.

1.4 Why Face?

When considering the appropriate biometric for the PN application, we must
bear in mind the requirements specific for the mobile device. To do this, eight
popular biometrics are investigated, namely, fingerprint, hand geometry, speech,
signature, gait, 2D face, 3D face, as shown in Fig. 1.2. The applicability of the
biometrics are assessed under three explicit criterions, closely related to the three
requirements in Section 1.3: accuracy which is related to security, transparency
which is related to convenience, and cost which is related to complexity.
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?

Figure 1.2: Left - a mobile device; right - popular biometrics in use: hand
geometry, fingerprint, iris, 3D face, 2D face, gait, signature, and speech.

Fingerprint is one of the oldest and most popular biometric modalities [116].
The accuracy of fingerprint recognition is acceptable: as reported in [115], state-
of-art fingerprint recognition systems can achieve an equal error rate (EER) of
2.2% at rather harsh testing conditions, and much better results under ideal
circumstances.. Transparency can be realized, given that the user’s fingerprint
can be sensed at any time and anywhere. This, however, leads to very high
hardware cost, as the fingerprint sensor should then cover nearly the entire
surface of the mobile device. This not only makes the device expensive, but also
renders the device physically vulnerable. Besides, wearing gloves or pressing the
device with pen would easily cause failure.

Hand geometry recognition has similar problems. Although the accuracy of
hand geometry is high, with an EER as low as 0.3% as lately reported [177],
it is largely dependent on the hardware acquisition system. In conventional
hand geometry systems [186] [177], a plane larger than hand is required to place
the user hand on for scanning the whole rigid hand geometry. Additionally,
pegs are installed on the plane to fix the positioning the hand. Such settings,
unfortunately, are impossible to implement on a mobile device.

Iris is another important biometrics well-know for its uniqueness and accu-
racy [40]. A FRR of 1.1− 1.4% can be achieved at the FAR of 0.1% [126]. The
difficulty of iris for the mobile device, however, lies in its high-cost hardware
camera, which should be able to catch the high-resolution iris images. In a
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transparent manner, the requirement is intimidatingly high as the camera has
to to track the iris in movement and at uncontrollable distances.

Speech and signature cannot be integrated to the mobile device for ongoing
authentication, because the input of such biometric data is explicit and requires
much user attention. Gait is not to be considered, as the gait of the user does
not always exist (e.g. when the user is seated or standing still). Even when the
gait exist, it is not easily detectable from the view of the mobile device. Besides,
the accuracy of speech, signature, and gait as biometrics are relatively low as
they are not sufficiently consistent, very often subject to change. For example,
it is reported in a late evaluation that speech recognition only reaches a FRR
of 5− 10% at the FAR of 2− 5% [130].

Face is the most classical biometric, as in daily life, it is used by everyone to
recognize people. Face is also important in many practical cases of identification,
such as the mugshot in police documentation, or the photo on a driver’s licence
and passport. For these reasons, automatic face recognition has been studied
ever since computers emerged, and it remains a heated research topic until this
day. Extensive reviews can be found in, for example, [24] [191]. There are two
types of face recognition: two-dimensional face recognition using face texture
images, and three-dimensional face recognition using face shapes and/or face
textures. Generally speaking, the accuracy of face recognition is high. According
to the latest face recognition vendor test FRVT 2006 [126], the state-of-art
two-dimensional face recognition reaches a FRR of 0.8− 1.6% under controlled
illuminations, and 10− 13% under uncontrolled illuminations, both at the FAR
of 0.1%. For three-dimensional face recognition, illumination does not have an
influence, and a FRR of 0.5−1.5% is reported at the FAR of 0.1%. Transparency,
furthermore, is an advantage of the face as a biometric. From the user point of
view, no explicit action is needed for data acquisition. In the two-dimensional
form, face data can be collected at low cost, with a low-end camera mounted
on the mobile device. Besides, the biometric data collected with such cameras
are small in size, potentially taking up little space and computational resources.
Face in the three-dimensional form is not practical in contrast, as both hardware
and software requirements are substantially increased.

Table 1.4 is a summary of the discussion, listing the applicability of the
biometrics regarding accuracy, transparency, and cost. It is clear that face in
the two-dimensional form is the most appropriate biometric in the PN context,
offering high accuracy under controlled illumination, and moderate accuracy
under unconstrained illumination, at low cost and in a transparent manner.
This thesis, therefore, will concentrate on all the interesting aspects relevant to
the two-dimensional face recognition problem.
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biometrics accuracy transparency cost

face (2D) − √ √
face (3D)

√ √ ×
fingerprint

√ − ×
iris

√ − ×
hand geometry

√ − ×
speech − × √
signature − × √
gait − × √

Table 1.1: Applicability of different biometrics.
√

: good, −: moderate, ×: bad.

1.5 Fusion

Biometric fusion has been a popular research topic in recent years. This is
based on the consideration that a single biometric is no longer sufficient for
many secure applications [133]. Fusion is a way to combine the information
from multiple biometric modalities, multiple classifiers, or multiple samples,
in order to further improve the performance of the biometric system. In the
PNP2008 project, the time sequences taken by the MPD can be seen as multiple
information sources that can be fused to achieve higher performances. This
strategy not only increases the system security level, in the sense that it avoids
the device being taken away by impostors after the user logged on, but also
essentially improves the system performance. Another context of our work is the
European FP6 project 3D Face [1], which aims to use 3D facial shape data and
the 2D texture data together for reliable passport identification in the future.
In this context it is also important to study the way to effectively combine the
information from the two distinct biometric modalities.

1.6 Outline of the Thesis

The outline of this thesis roughly follows the standard diagram of the face
recognition system. From the raw image taken from the mobile device to the
final decision of accept or reject, the data pass through such a processing line:

1. Face detection from the image;

2. Finer face registration from the detected face;
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3. Illumination normalization to remove external influences;

4. Verification the processed face;

5. Information fusion to strengthen the final decision.

Chapter 2 deals with the first two steps, i.e., face detection and registration.
The two steps are combined in one chapter, because we propose to do fast and
robust face registration based on detected facial landmarks, which again turn out
to be an object detection problem. The face and facial features share common
properties as objects, in the sense they both possess large variability either intra-
personally or inter-personally. The face detection is done by the Viola-Jones
method, which is fast in detection because of its easily scalable features and the
cascaded structure. For face registration, we trained 13 facial feature detectors
by the specially tuned Viola-Jones method. Compared to face detection, a
major problem in facial feature detection is the unavoidable falsely detections.
For this purpose, we propose a very fast post-selection strategy, based on the
error-occurring model, which is accurate and specific to the detection method as
well as to the objects. The proposed post-selection strategy does not introduce
any statistical model or iteration steps.

Chapter 3 studies the verification problem1. In this step, we proposed to
use the likelihood ratio based classifier, which is statistically optimal in theory,
and easy to implement in practice. On the mobile device, the enrolment can be
done by taking a video sequence of several minutes. Above all, the method is
chosen because the verification problem has a largely overlapping distribution
of the classes, and therefore can be better solved by density-based methods
than boundary-based methods. Furthermore, we have investigated the influence
of various dimensionality reduction methods on the verification performance.
Besides, we have also compared the single Gaussian model and the Gaussian
mixture model.

Chapter 4 discusses the illumination normalization problem. An extensive
review of the illumination normalization methodologies are done before the so-
lution is given. We show that the three-dimensional modeling methods are
not only complicated in computation, but also too delicate to generalize to
the many scenarios we require. Instead, we propose two simple and efficient
two-dimensional preprocessing methods: the Gaussian derivative filter in the
horizontal direction and the simplified local binary pattern as a filter. The

1Note that we introduce the face verification prior to the illumination normalization because
it is necessary to know the evaluation methods before studying the illumination problem.
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two methods, especially the later, are computationally low-cost, and meanwhile
exhibit a high degree of insensitivity to illumination variations.

Chapter 5 and Chapter 6 investigate the information fusion problem. In
Chapter 5, we focus on the decision level, and propose the threshold-optimized
decision-level fusion. In Chapter 6, we focus on the score level, and proposed an
optimal LLR-based score-level fusion. A hybrid fusion scheme is also proposed
based on the two proposed fusion methods. The common characteristics of the
proposed fusion methods is that the receiver operation characteristics (ROC)
of the component system is used as an intermediate in fusion, providing an
easy and efficient way to study the problem from the operation points, without
the need to tackle the more complicatedly distributed matching scores, as is
normally done in biometric fusion.

In the end, Chapter7 presents the practical implementation of the the face
verification system, and further sums up the thesis.
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Chapter 2

Face Detection and
Registration

2.1 Introduction

1Face detection is the initial step of face recognition. A general statement of the
problem can be defined as follows: given an arbitrary image, determine whether
or not there are any faces in the image and, if any, return the location and scale
of each face [65] [185]. Although it is an easy visual task for human, it remains a
complicated problem for computer, due to the fact that face is a dynamic object
subject to a high degree of variability, originating from both external and inter-
nal influences. There has been extensive literature on automatic face detection,
using various techniques with different methodologies, as will be reviewed in
good detail. In our work, we have chosen to use the Viola-Jones face detection
method [179], one of the most successful and well-known face detectors, with
further adaptations for the mobile application.

Face registration, which aligns the detected face onto a standard scale and
orientation, is an equally important step from the system point of view. Re-
search has proved that accurate face registration has an essential influence on
the subsequent face recognition performance [9] [131] [11] [10]. Basically, face
registration re-localizes the face on a finer scale, which means that a more de-
tailed study of the face content must be done. To achieve real-time performance

1This Chapter is based on the publication [10], [11].
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and algorithmic simplicity, the proposed face registration is based on firstly de-
tecting a limited number facial features called landmarks, and then from the
detected landmarks calculating the registration transformation. This converts
the face registration problem into a facial feature detection problem and a ge-
ometric transformation. This explains why we combine the face detection and
registration into one chapter, as similar detection problems will be addressed.
Successful face detectors, however, cannot be directly applied to facial features.
More care must be taken due to the fact that facial features are harder ob-
jects to detect, insufficient by nature, with much fewer discriminative textures
compared to the entire face. In this chapter, we propose easy solutions to cus-
tomize the Viola-Jones detection method into efficient facial feature detectors,
circumventing the intrinsic insufficiencies.

The remainder of this chapter is organized as follows. For the face detection
problem, Section 2.2 reviews the existent face detection methods in two groups,
and Section 2.3 introduces the Viola-Jones detector and adapts it into the MPD
application. For the face registration problem, Section 2.5 reviews the face
registration methods, and Section 2.6 presents our solution which satisfies the
requirements of speed, accuracy, and simplicity. Section 4.7 summarizes this
chapter.

2.2 Review of Face Detection Methods

Face and facial features are both hard objects to detect. Before going into
detailed methods, it is interesting to first investigate the inherent difficulties in
general for such a problem.

Basically, the difficulties of face and facial features detection lie in the fol-
lowing two aspects:

1. Choice of Feature
Face and facial features are both highly flexible objects, with diverse ap-
pearances from different subjects, easily influenced by expression, pose,
or illumination. A major difficulty of face or facial feature detection,
therefore, lies in the way of selecting appropriate features to represent the
object. The feature has to be representative of the object, and robust to
the object variations.

2. Choice of Classifier
Selecting features is only part of the work. Extracted features will be fed
to certain classifiers. In most cases, the choice of features and the choice
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of classifiers are mutually dependent. It is most desirable that simple
features be combined with simple classifiers for robustness and simplicity,
but in general such combinations cannot solve difficult detection problems.
As a compromise, simple features incorporate a complex classifier, like
in the Viola-Jones face detector [179], or complex features incorporate a
simple classifier, like in the eigenface method [167]. In some work, complex
features work together with complex classifiers, but the generalization of
such a system will suffer, as too many trained parameters are involved.

It is difficult to partition the large variety of detection methods into widely-
separate categories, as the influences of features and of classifiers are inter-
weaved. Nevertheless, depending on the emphasis of the algorithms, we still
group the face detection methods in two large categories: heuristic-based detec-
tion and classification-based detection. The former has more emphasis on the
feature, while the later on the classifier. We do not intend to enumerate all the
existent face detection methods in literature, instead, we are more interested in
the methodologies underlying the methods, and their pros and cons.

2.2.1 Heuristic-Based Methods

Heuristics, the empirical knowledge of human face, are the first used clues for
face detection. The heuristics which can direct the detection are normally very
general, put into words like ”the face region is of skin color”, and ”the eyes are
above the nose”. This trait makes the methods very simple and fast. On the
other hand, however, due to the difficult nature of the face detection problem,
methods using such simple rules tend to fail in difficult image situations, for
example, when the skin tone changes under extraordinary illumination, or when
the nose is concealed by shadow.

In this section, we will review heuristic-based face detection methods, trans-
ferring the human-recognized heuristics into computer-recognized rules. Two
most commonly-used heuristics are reviewed: color and geometry.

Color

Skin color is representative of the face. It was found that human skin colors give
rise to tight clusters in normalized color space, even when faces of different races
are considered [71] [104]. Typical color spaces are RGB (red - green - blue) [71],
HSI (hue - saturation - intensity) [95], YIQ (luma - chrominance) [34], YCbCr
(luma - chroma blue - chorma red) [181], etc.
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Figure 2.1: Per-pixel skin classification, blob growing, and detected face [118].

Color segmentation is performed by classifying each pixel value in the in-
put image. Skin color can be modeled either in parametric or nonparametric
manner. For example, histograms or charts are used in [22] [152], unimodal or
multimodal Gaussian distributions are used in [127] [67]. The color models can
be learned once for all, or in an online-updating manner [118].

For skin color classification per pixel, an optimal classification criterion is
the likelihood ratio, expressed by

p(x|ω)
p(x|ω̄)

> t (2.1)

where x is the color vector of a certain pixal, p(x|ω) denotes the possibility that
x belongs to the skin-color class ω, and p(x|ω̄) denotes the possibility otherwise.
t is a threshold of the likelihood ratio.

By scanning the input image and applying pixel classification, a skin map
is generated. In the next step, the skin pixels are grouped together using blob
growing techniques to determine the face region [118] [67]. Fig. 2.1 shows an
example of skin color based face detection.

Face detection by skin color is among the most simple and direct methods.
The low complexity enables swift and accurate face detection in well-conditioned
images. The drawback of the method, however, is its relative sensitivity to
lighting conditions and camera characteristics, as well as the possibility to cause
false acceptances in clustered backgrounds. Moreover, gray images cannot be
processed due to the lack of color space information.

Geometry

Face geometry, the face shapes or the facial features layout, is useful heuristics
for face detection. To detect such geometry, it is natural to first find out edges
and lines which are representative of the geometry. In most geometry-based
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Figure 2.2: Example of edge-based face detection: original image, grouped
edges, and detected faces [58].

work, therefore, edges or structural lines are used as features. They are firstly
extracted from the input image, and then combined to determine whether a face
exists based on the certain geometrical constraints.

In [138], structural lines in the input image are extracted using the greatest
gradient method, and then compared to the fixed sub-templates of eyes, nose,
mouth, and face contour. Edges in the input image can be detected by the Sobel
filter [29], Marr-Hildreth edge operator [58], or derivatives of Gaussian [62], and
then grouped together to search for a face. More recent methods include edge
orientation map (EOM) and edge intensity map (EIM) [54], which uses edge
intensity and edge orientation as features, and at the same time incorporates a
fast hierarchial searching mechanism.

Basically, the geometry-based methods first compute features by scanning
the entire input image with edge/line operators, then analyze the outcome image
by grouping the resultant features. The existence of a possible face is finally
determined by the combined evidences. This methodology is very similar to
the color-based face detection methods. Fig. 2.2 shows an example of edge-
based face detection [58]. In this work, edge contours are used as the basic
features. Edges located by the Marr-Hildreth detector are filtered and cleaned
to obtain contours. The contours are labeled as left, right and head curves
according to their shapes, and then connected in groups. An edge cost function
is defined to evaluate which of the groups represents a possible face candidate.
Note how close the procedures actually are to [118] in Fig. 2.1. We point this
out because in the following, a completely different face detection methodology
will be introduced.

Geometry-based methods translate the obvious knowledge of face geometry
into face detection rules. It is as simple and direct as the color-based methods.
However, the features used by the methods are relatively sensitive to illumina-
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Figure 2.4: Classification of every candidate.

tion changes and noises. Consequently, the face detection methods based on
grouping such features inevitably suffer from this susceptibility and cannot per-
form very well in case of poor illumination conditions and clustered background.

2.2.2 Classification-Based Methods

Generally speaking, heuristic-based methods are not reliable enough under dif-
ficult image conditions due to their simplicity. There is still a need for face
detection methods that can perform in more or less hostile scenarios, like poor
illuminations and clustered background. This has inspired abundant research
work on a new methodology, which treats face detection as a pattern clas-
sification problem. Benefiting from the huge pattern classification resources,
classification-based methods are able to deal with much more complex scenarios
than heuristic-based methods.

Classification-based methods transfer the face detection problem into a stan-
dard two-class classification problem. Two explicit classes are defined: face class
and non-face class. Before discussing the classifiers, we first explain how the in-
put patterns of the classifier are obtained.

As no prior information is known about object location or size, the detection
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process must go through an exhaustive combination of positions and scales. Fig.
2.3 illustrates the searching strategy, in which every x is a fixed-sized candidate
for the classifier, as shown in Fig. 2.4. In this way, a detection problem is
transferred into a classification problem. As indicated in Fig. 2.4, the classifier
input can be the pre-processed image patch x (like low-pass filtering, histogram
equalization), or specially extracted image features (like Gabor features, Haar-
like features). Obviously, the computation involved in such a process is very
high. For example, in an input image of small size 100 × 100, the search with
a template size of 10 × 10 and a scaling factor of 1.2 will result in 61, 686
candidates, which implies potentially 61, 686 times feature extraction and 61, 686
times pattern recognition. This puts forward high demands on the designing of
the features and classifiers, or sometimes the co-design of them.

In the following session, we will discuss the classification-based face detection
methods in two categories depending on the characteristic of the classifiers used,
namely, linear methods and nonlinear methods.

Linear Methods

Images of human face lie in a subspace of overall image space. Linear meth-
ods construct a linear classifier, assuming a that a linear separation boundary
solves the classification problem. In this section the two most important linear
methods, principal component analysis (PCA) and linear discriminant analysis
(LDA), are reviewed. These two methods embody the key idea of linear meth-
ods, namely, reducing the subspace dimensionality (hence complexity) based on
optimization of certain criterions through linear transformations. Linear clas-
sification methods are simple and clear from the mathematical point of view.
Moreover, they can be extended to the nonlinear space by introducing nonlinear
kernels.

PCA was firstly used by Sirovich and Kirby for face representation [150], and
by Turk and Pentland for face recognition [167]. Given a set of N faces, denoted
by x1, ..., xN , which are vectorized representations of the two-dimensional image.
The covariance matrix Σ is computed by

Σ =
1

N − 1

N∑
i=1

(xi − μ)(xi − μ)T (2.2)

where μ = 1
N−1

∑N
i=1 xi is the mean face vector.

The criterion for PCA is maximal preservation of the distributional energy
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after the linear projection, as expressed by

UPCA = arg max
U
|UTΣU | = [ui, ..., uk] (2.3)

where k is the reduced dimensionality, and U is the orthogonal matrix satisfying
UTU = I. This is a eigenvalue problem

Sui = λiui, i = 1, ..., k (2.4)

which can be solved by eigenvalue decomposition of Σ, or singular value decom-
position (SVD) the data matrix X that contains the sample xi as columns.

LDA is a supervised dimensionality reduction approach, seeking to find a
projection matrix which maximally discriminates different classes [52]. Gener-
ally speaking, LDA is intended for a multi-class problem, but it can also be
applied to the two-class face detection problem when the class of face and non-
face are clustered into subclasses [183] [154]. This allows more complicated
modeling of the face space. Let the between-class scatter be defined as

Sb =
c∑

i=1

Ni(μi − μ)(μi − μ)T (2.5)

and the within-class scatter be defined as

Sw =
c∑

i=1

∑
x∈ωi

(x− μi)(x− μi)T (2.6)

where μi is the mean of class ωi, μ is the total mean, Ni is the number of
samples in class ωi, and c is the number of classes. LDA aims to find the pro-
jection matrix U which maximizes the ratio of the determinant of the projected
between-class scatter and within-class scatter

ULDA = arg max
U

|UTSbU |
|UTSwU | = [ui, ..., uk] (2.7)

This is a generalized eigenvalue problem

Sbui = λiSwui, i = 1, ..., k (2.8)

which can be solved by simultaneous diagonalization of Sb and Sw [55].
Linear transformations U simplifies the original high-dimensional space, mak-

ing it more tractable under specific criterions. Classification can be done in the
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Figure 2.5: (a) Decomposition of the face space to a principal subspace F and
a complementary subspace F̄ by PCA. (b) A typical eigenvalue spectrum and
its division into the two spaces [108].

reduced space in various ways. Turk and Pentland defined a preliminary mea-
sure of ”faceness” [167], which is the residual error termed by DFFS (distance
from face space), indicating how far an input image patch is from the face space.
The Mahalanobis distances [44] in the reduced face, DIFS, can also be used as
a measure of likelihood that an input vector x belongs to the face class. Both
DIFS and DFFS can be calculated by linear manipulations of the vector x, and
illustrations are given in Fig. 2.5.

DIFS(xi) =
(
(xi − x̄)TΣ−1(xi − x̄)

) 1
2 (2.9)

DFFS(xi) = (I − UTU)(xi − x̄) (2.10)

Linear methods derive the final quantitative measure of ”faceness” by linear
transformations of the input pattern x. In the work of Moghaddam and Pentland
[110], the measures are further related to the class conditional probabilities
under certain simplified assumptions, and statistically optimal classification can
be achieved in this respect. We will revisit the linear classification problem in
Section 3 for face recognition.
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Figure 2.6: Neural network structure used in [135] for face detection.

Nonlinear Methods

Due to the high variability and complexity of the face images, linear models are
often not adequate to achieve very high robustness and accuracy for the face
detection problem. Nonlinear classification methods, which accommodate more
complicated class distributions, have been intensively investigated in this respect
[65] [185]. In this section, we will mainly review three of the most renowned and
interesting nonlinear classification methods, namely, neural network, support
vector machine, and Adaboost.

Neural networks have long been a popular technique for many complicated
classification problems [12]. Basically, a neural network contains a number of
interconnected nodes, i.e. neurons, resembling human brain structures. The in-
terconnections of these neurons are learned from a set of training samples. In the
application of face detection, the network is trained as a discriminant function
between the face class and non-face class. Examples are Multi Layer Percep-
tron (MLP) [81] [135], probabilistic decision-based neural network (PDBNN)
[97], sparse network of winnows (SNoW) [134], etc. A representative work is
that of Rowley et al. [135], in which a system is proposed incorporating face
knowledge in a retinally connected neural network, as shown in Fig. 2.6 [135].
The basic classification unit are of the size 20 × 20, sampled from the input
image in the way described in Fig. 2.3. In the neural network structure, there is
a hidden layer with 26 neurons, where 4 of them look at the 10× 10 subregion,
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Figure 2.7: SVM-based face detection in [120], support vectors and the decision
boundary.

16 look at 5× 5 subregion, and the rest 6 look at 20× 5 overlapping horizontal
stripes. The network is trained by the back propagation (BP) algorithm [44],
using a large set of face and non-face samples. For more reliable performance,
multiple neural network of the same structure are trained with different initial
weights and different sample sets, and the final decision is based on arbitration
of all these networks. The arbitration of multiple classifiers is an important part
of the thesis, and we will come to it later in Chapters 5 and 6.

Another interesting point in Rowley et al.’s method is that bootstrapping
[44] is adopted in training. This is due to the fact that the non-face class
is extremely extensive, which is impossible to be covered by limited available
samples. Instead of running the training exhaustively on all possible non-face
patterns, the idea is to concentrate on the ”difficult” non-face patterns which lie
close to the boundary of the two classes. The strategy, therefore, is simply to re-
train those non-face samples which are misclassified by the previous iterations,
thus putting more emphasis on those patterns difficult to classify. Similar ideas
will be revisited in the Adaboost approach.

One of the disadvantages of the neural network approach is its high compu-
tational complexity, which makes real time face detection difficult. Besides, it
is often susceptible to overtraining due to its high flexibility.

Support Vector Machine (SVM) is another important classification technique
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Figure 2.8: The training procedure of the Adaboost classifiers. Left: the original
classification problem, samples equally weighted; middle: the first weak linear
classifier; right: reweighting of the training samples, where misclassified samples
are given higher weights, which are indicated by the dot size.

that can generate rather complicated decision boundaries [30]. The idea behind
SVM is that when the original feature vectors are mapped into a higher di-
mensional (sometimes infinite) space, a simple linear classifier can be expected
to achieve good classification performance. In the nonlinearly mapped feature
space, SVM constructs a maximal margin linear classifier [44], which, back in
the original feature space, turns out to be a nonlinear classifier. The so-called
”kernel trick” makes this mapping of space simple, by introducing the nonlinear
inner product kernels [148].

SVM has been widely used in the face detection problem [120] [80]. In the
work of Osuna et al. [120], the image window of size 19 × 19 is used as the
basic classification unit. A second order polynomial kernel is adopted in the
SVM formulation. As shown in Fig. 2.7, the faces along the boundary are
the ”support vectors” in the two opposite classes. It is easy to see that they
represent difficult samples in either class.

The advantage of SVM is its generalization ability. Compared to the neural
networks, in which each sample in the specific training set often has an influ-
ence on the final network weights, SVM only counts those critical samples, i.e.
support vectors, which are most important for classification. The disadvantage
of SVM, however, is its high computation load, with respect to both CPU and
memory, to solve the quadratic optimization problem. This drawback becomes
especially serious when the training set is large.

The third classification method we are going to review is the Adaboost al-
gorithm. In general, boosting means an iterative process, which accumulates a
number of component classifiers to form an ensemble, whose joint classification
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performance is higher than any of the component classifier. Adaboost, short for
”adaptive boosting”, is characterized by the adaptive weight associated with
each training pattern. The weight is adapted in such a way that difficult pat-
terns receive higher weights, meaning that they will be given more emphasis
during the next iteration. Fig. 2.8 illustrates the Adaboost training process,
in which the misclassified samples are given higher weights to train the next
component classifier.

There are several desirable properties of the Adaboost classifier. Firstly, it
uses simple weak component classifiers, which may only perform slightly better
than chance [44], like the simple linear classifier in Fig. 2.8. Secondly, Adaboost
can reduce the training error to an arbitrarily low level when the number of
weak classifiers is sufficiently large. This is similar to the neural network, but
as a third point, Adaboost has much better generalization capabilities [44] [143]
compared to neural network. The key insight is that generalization performance
is related to the margin of the samples, and that Adaboost rapidly achieves a
large margin [179]. Adaboost classifiers have been successfully applied to the
face detection problem [179] [153] [145]. In the next section, we will introduce
the famous Viola-Jones method, which uses the Adaboost classifier and realizes
real-time robust face detection.

2.3 The Viola-Jones Face Detector

The Viola-Jones face detector is one of the most well-known face detection
methods in literature. There are three characteristics in this method: Haar-like
features that can be rapidly calculated across all scales, Adaboost training to
select features, and cascaded classifier structure to speed up the detection.

2.3.1 The Haar-Like Features

Simple Haar-like rectangular features are used in the Viola-Jones face detectors,
as shown in Fig. 2.9. The features are calculated as the sum of the pixel values in
white rectangles subtracted by the sum of pixel values in the gray rectangles. In
[179], three feature different structures are used: two-rectangle, three-rectangle,
and four-rectangle. Consequently, features with different structures, different
sizes, at different locations relative to the enclosing window (with the size of a
basic classification unit x as shown in Fig. 2.3), construct a very large pool of
features. For example, when the basic classification unit has a size of 24 × 24,
the exhaustive set of features is about 160,000. This is a over-complete feature
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Figure 2.9: Example rectangular features shown relative to the enclosing window
[179].

Figure 2.10: Integral image I. Left: the value I(x, y) of the integral image
at point (x, y) is the sum of all pixel values in the marked rectangle. Right:
the sum of the pixel values within the marked rectangle is simply I(x4, y4) +
I(x1, y1)− I(x2, y2)− I(x3, y3).
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Figure 2.11: Scanning the input image at different scales. It can be seen that
at either scale, the calculation of the feature only involves additions and sub-
tractions of 6 values in the integral image.

set.
By introducing an intermediate integral image, the pixel values within any

rectangle can be easily calculated using only 4 values from the integral image, as
clearly illustrated by Fig. 2.10. As discussed in Section 2.3.2, one of the biggest
obstacles for real-time detection is the exhaustive scanning at all possible scale
and location on an input image. To obtain the image pyramids in Fig. 2.3, in
the first place, is very time consuming. Integral image solves this problem by
avoiding the image pyramids. As shown in Fig. 2.11, the exhaustive search in
the image pyramids is transformed into the scanning of a single input image
with windows of different scales, with a certain step like 1.1 or 1.2. Fig. 2.11
shows one specific Haar-like features at two different scales. It can be observed
that at either scale, the calculation of this feature is only related to the integral
value of the 6 points marked (interpolations can be used when the coordinates
of the points are fractional). This implies that feature values at any scale can
be easily obtained by calculating the integral image only once. As pointed out
in [179], any procedure that requires pyramid calculation will necessarily run
slower.

2.3.2 Adaboost Training

It is easy to see from Fig. 2.9 that the Haar-like features are representative
of some simple image textures like edges and bars of different orientations. As
mentioned in the previous section, the total number of such Haar-like features is
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huge. Adaboost training aims to select from the huge feature pool a combination
of features which can well discriminate the face and the nonface patches.

The weak classifier in the Adaboost training is simply a decision ”stump”
[179], which consists of a feature f , i.e., the specific Haar-like feature as shown
in Fig. 2.9, a threshold θ, and a polarity p

h(x, f, p, θ) =
{

1 if pf(x) < pθ
0 otherwise

where x is the basic classification unit as illustrated in Fig. 2.3, of the size
24 × 24. The Adaboost training algorithm in the work of Viola and Jones is
formally described as in Algorithm 1.

Algorithm 1 The Adaboost training algorithm.
Require: The sample images (x1, y1), ..., (xn, yn) where yi = 0, 1 for negative

and positive samples, respectively.
Ensure: The strong classifier constituted by a number of selected weak classi-

fiers.

for t = 1, ..., T do
Normalize the weights, wt,i ← wt,i∑n

i=1
wt,j ;

Select the best weak classifier with respect to the weighted error ε =
minf,p,θ

∑
i ωi|h(xi, f, p, θ)− yi|.

Define ht(x) = h(x, ft, pt, θt where ft, pt, and θt are the minimizers of εt;
Update the weights: wt+1,i = wt,iβ

1−ei
t , where ei = 0 if sample xi is

classified correctly, ei = 1 otherwise, and βt = ε
1−ε .

end for

The final strong classifier is:

C(x) =
{

1
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

where αt = log 1
βt

.

2.3.3 Cascaded Classifier Structure

The Adaboost training selects a combination of weak classifiers, and the final
ensemble classifier can be used to classify every basic classification unit. As
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Figure 2.12: Cascaded classifier structure.

analyzed in Fig. 2.3, however, the number of all possible classification units,
even in a small sized input image, are vastly huge. To go through all of them
with all the selected weak classifiers is forbiddingly complex. Based on the
fact that most of the basic classification units are negative, cascaded classifier
structure as shown in Fig. 2.12 radically reduces the computation time while
improving detection accuracy.

The classifier is designed in such a way that the initial cascade is able to elim-
inate a large percentage of negative candidates with very little processing. Sub-
sequent cascades eliminates additional negatives but requires some additional
computation. After several cascades the number of classification units have
been reduced dramatically, and the later cascades only focus on very promising
candidates.

In practice the cascaded structure is realized by successive Adaboost learn-
ing. Each stage is trained using the scheme described in the previous section.
For a single cascade, weak classifiers are accumulated until certain performance
criterion (e.g. FAR or FRR) is met for this stage. Then similar training is con-
tinued to select another set of weak classifiers to form the next cascade with the
performance criterion. According to the Adaboost rule, the training is consecu-
tively focusing on more difficult samples, therefore, given the same performance
criterion, the later cascades will contain an increasing number of weak classifiers.

In the detection process, most of the classification units are rejected after
being processed rapidly by the earlier cascades containing fewer weak classi-
fiers. This makes the algorithm extremely efficient for the detection problem as
described in Fig. 2.3.
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Figure 2.13: The face training set of the size 24× 24, from [179].

2.4 The Viola-Jones Face Detector Adapted to
the MPD

We have adopted the face detector trained in [179]. The face samples are con-
sisted of 4,916 roughly aligned human faces scaled to the base size of 24. Sam-
ples of the training face images x are shown in Fig. 2.13 to give some idea of
the large variability in the face class. Non-face training samples are randomly
chosen from images that do not contain human face.

Although the Viola-Jones face detector proves to be fast and robust for
face detection in general, it can be further improved for the application of face
detection on the MPD in particular.

The specificity of the face images in the MPD application is related to the
distribution of face sizes in the normal self-taken photos from a hand-held device.
This information provides useful constraints on the searching and significantly
speeds up the implementation. On the left of Fig. 2.14, some typical face images
taken from ordinary hand-held PDA (Eten M600) are shown.

Suppose with a very high probability 1 − ε, ε ∼ 0, the detected face size s
lies in a scope between smin and smax, i.e. p(s|smin ≤ s ≤ smax) = 1−ε, where p
is the probability distribution function of s. Then there are two steps to reduce
the computational efforts for face detection:

1. Down-scale the original image first before detection. The down-scaling
factor, for example, can be set around smin

sface
, where sface is the minimal

detectable scale [179]. In the trained detectors, sface = 24.
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Figure 2.14: Left: typical face images taken from ordinary hand-held PDA (Eten
M600), with the size 320 × 240. Right: down-scaled face images with the size
100× 75. Face detection results are shown in both cases.

2. In the reduced image, restrict the scanning window (as shown in Fig. 2.11)
to be from the minimal size 24 to the maximal size 24 smax

smin
.

Referring to Fig. 2.3, it can be easily seen that the number of candidates
for classification increases exponentially with the size of the input image. The
first step, therefore, radically reduces the number of possible classification units.
Despite the fact that the Viola-Jones face detector has good scaling property
and efficient cascaded structure, this rescaling strategy is still very useful to
speed up the detection. In addition, the second step spares the unnecessary
search for faces of too small or too large sizes. This furthermore reduces the
number of classification units to a large extent.

Fig. 2.14 shows detection results both in the original and in the reduced
image. We observed in the experiments that in the latter, equally good results
are obtained with far less effort. In practice, as the minimal detectable size
is small enough, 24 × 24 (also shown in Fig. 2.14), the original image can
always be down-scaled as long as the face in it is no smaller than this size.
As a result, considerable calculation time is saved for the MPD application.
One possible drawback of down-scaling, however, is that the detected face scale
could be somewhat coarser than that in the original image, since fewer scales
have been processed. This nevertheless hardly affects the final face recognition,
as registration of the detected faces on a finer scale will follow.
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2.5 Review of Face Registration Methods

Although an satisfactory solution has been found for face detection problem on
an MPD, location of the detected face is not precise enough for further analysis of
the face content. This is due to the fact that considerable variations containing
poses, illuminations, and expressions, as shown in Fig. 2.13, are necessary in
the face training set to achieve a robust face detector. This inevitably leads to
imprecision of face localization, as the training faces themselves are not strictly
aligned.

For the subsequent face recognition task, face registration must be done first
to align the detected face onto a finer scale, i.e., to a standard orientation, po-
sition, and resolution. It has been emphasized in literature that high quality
face registration is very important for the face recognition performance [9] [131].
The problem of face registration, however, is to some extent overlooked in aca-
demic face recognition research, as many databases used in the experimental
evaluation, such as the BioID database [171], FERET database [172], FRGC
database [173], have manually labeled landmarks available for the registration
purposes. Using these manual labels for registration in face recognition exper-
iments leads to optimistic performance estimates, as in reality, these labels are
not available and one has to rely on automatic landmark detection, which may
be less accurate.

We categorize the automatic face registration methods into three groups:
holistic methods, local methods, and hybrid methods, depending on the method-
ologies used to look at the face content.

2.5.1 Holistic Face Registration Methods

In the holistic face registration methods, the face image is used as a whole, and
the registration problem is converted into an optimization problem. Examples
of the optimization criterion are correlation [142], mutual information [180] and
matching score [15], as a function of the holistic face image content. The reg-
istration problem is formulated as finding the transformation parameter which
best matches the input image to the template

θ = arg max
θ
{F (x, r, θ)} (2.11)

where θ denotes the transformation parameters, including translation, rotation,
and scaling, F is the criterion function, x is the holistic image (results of rough
face detection), and r is the template. This equation is further illustrated by
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Figure 2.15: Holistic face registration methods. The input image is transformed
to find the optimal match to the template.

Fig. 2.15. Note that x, the holistic image content is taken into consideration in
calculating the matching criterion.

The advantage of this category of methods is that the registration can be
robust with respect to global noise or illumination effects, and can work with
low quality or low resolution images on which local analysis is not possible. The
disadvantage of holistic methods, however, is its computational complexity, as
the iterations in the optimization process involve every pixel value in the de-
tected face image. The complexity of such an nonconvex optimization problem,
arising from the local minima and the high-dimensional parameter space, also
adversely influences the registration performance.

2.5.2 Local Face Registration Methods

In comparison, local methods only make use of a limited number of local fa-
cial landmarks to do face registration. Prominent facial features are detected,
such as eye, nose, mouth, etc, and their coordinates are used to calculate the
transformation parameter θ as in (2.11).

Various facial feature detection methods have been proposed in literature.
On face images obtained under good conditions (e.g. frontal pose, uniform
illumination), simple strategies can be used to locate the eyes and the mouth
just by some heuristic knowledge, such as brightness of the facial features and
symmetry of the face [137] and [68]. To deal with a larger range of face images,
more complicated local facial landmark detectors are developed. In [20], multi-
orientation, multi-scale Gaussian derivative filters are used to detect the local
feature. Furthermore, the detection is coupled with a relative statistical model
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Figure 2.16: Local face registration methods. Left: located facial features, right:
statistical map of the facial feature locations when the two eyes are used as the
reference [20].

of the spatial arrangement of facial features to yield robust performance. Fig.
2.16 right shows the learnt relative statistical distribution of facial landmarks
when the two eyes are used as the reference points. This work identifies two
important aspects of local face registration methods: a robust detector, and a
geometrical shape model. Similar ideas can be found in [31] and [32], in which
the facial features are first detected by the Viola-Jones method, and then a
geometrical model called pairwise reinforcement of feature response (PRFR),
together with an active appearance model (AAM), are taken to further refine
the results.

Another interesting work is [50], in which Gabor wavelet networks (GWN)
are applied in a hierarchial way: the first-level GWN is used to match the
face and estimate the approximate facial feature locations, and the second-
level GWNs are individual facial feature detectors aiming to fine-tune the facial
features locations. This method resembles the elastic bunch graph matching
(EBGM) method [184], in the sense that in both methods, facial information is
derived in a top-down manner.

It can be noticed that in all these local methods based on facial feature local-
ization, geometrical shape information are incorporated either as an additional
constraint [20] [32] or as a prior [50]. This implies the insufficiency of facial
feature detectors in general, as observed by Burl et al., facial feature detectors
based on the local brightness information are simply not reliable enough [20].
In Section 2.6, we the characteristics of facial feature detectors will be further
investigated, and more insights will be given.
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Figure 2.17: Active shape model (from left to right: initialization, iteration,
more iteration, convergence.)

2.5.3 Hybrid Face Registration Methods

Hybrid face registration methods combine the holistic facial texture and the
local facial landmark information. Well-known examples are the active shape
models (ASM) [27] and active appearance models (AAM) [26] by Cootes et al.

In the ASM method, the shape, which is the combination of the marked fea-
ture points as shown in Fig. 2.17, is modeled in a PCA space. The eigenvectors
and the corresponding eigenvalues describe and restrict this space. The texture
information around the feature points is used to guide the fitting of those feature
points onto the face image, by analyzing the profile vector [27] or the wavelet
features [194] in the proximity of the feature points.

The fitting of ASM is basically an iterative optimization process, as shown
in Fig. 2.17, which can be summarized very briefly in Algorithm 1.

Algorithm 2 The Active Shape Model Algorithm.
Require: An input face image and an initialization of the shape on the face.
Ensure: The registration of the shape to the face image.

while The shape difference between the two consecutive rounds exceeds a
predefined small value, do

Update the shape: for each feature point on the shape, search in its neigh-
borhood for a local best matching, based on the analysis of the local tex-
tures;
Refine the shape: apply PCA model constraints to the shape obtained in
the previous step.

end while

Using a similar framework, AAM further incorporates texture analysis in
addition to the shape. More specifically, a Delauney triangulation of the face
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Figure 2.18: Active appearance model (from left to right: initialization, itera-
tion, more iteration, convergence.)

image is first performed and then the enclosed texture region in the triangles are
normalized to form the texture vector [26]. The updating is done by minimizing
the difference between the current texture and the texture predicted by the
model. Fig. 2.18 illustrates the iterative process of AAM fitting.

Both the ASM and the AAM use structural constraints to help locate the
feature points and thus align the face. With the assistance of such shape or
texture constraints, the requirements on the detectors used in the updating step
(2) is much lower as compared to those in the local methods of Section 2.5.2.
However, the hybrid methods have two drawbacks: first, initialization influences
the convergence, or in other words, local minima may occur in the optimization
and cause registration error; second, iterative steps takes time, especially in the
case of AAM when much information is to be processed each time. The second
drawback, especially, makes hybrid registration method unfavorable under our
real-time application context.

2.6 Face Registration on MPD by Optimized VJ
Detectors

To do face registration on the MPD, we have chosen for the local face registration
method as described in Section 2.5.2, because of its directness, i.e., no iterative
process is required as in the global or the hybrid methods. This potentially
speeds up the registration. The challenge, however, lies in the designing of
reliable facial feature detectors. From the previous analysis of local methods, it
has been clear that this is a very difficult task, see the comments of Burl et al.
at the end of Section 2.5.2.

We will stick to the Viola-Jones approach as described in Section 2.3, but
tactically optimize it for the facial feature detection problem. The reason to
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choose the Viola-Jones method is its speed, accuracy, and robustness, which
we wish to take advantage of again. In order to achieve equally satisfactory
performance on facial features as on face, however, additional work must be
done to cope with the inherent problems of facial features.

2.6.1 Problems of Facial Features as Objects

Facial features are difficult objects to detect. The reasons are twofold:

• Firstly, the structures of facial features are not constant enough, both
intra- and extra-personally. For the same individual, differences in ex-
pressions and poses can alter the shape of facial features considerably.
Consider the same face being happy and being sad. For different individ-
uals, the variability of the facial feature are also large, e.g. big round eyes
v.s. small narrow eyes. This will eventually lead to false rejections in the
detection.

• Secondly, the structures of facial features do not contain enough discrim-
inative information, or distinct local structures. In other words, chances
are not small that the structure of a background patch coincides with
that of a certain facial feature. For example, an eye basically has a white-
black-white pattern, which a nostril also possesses. This will lead to false
acceptances in the detection2.

The two points listed above advances a controversy in the facial feature
detection problem. If a detector is trained to be more or less specific, it easily
misses many true objects that deviate from the training set. On the other
hand, if the detector is trained somewhat looser, it tends to accept many false
background patterns. From a statistical point of view, this implies that the
facial-feature class and non-facial-feature class have large overlap in distribution
(in the Haar-like feature space as is specific for the Viola-Jones method, and
imaginably in other type of feature spaces for other detection methods), which
leads to inherently high Bayesian classification error that cannot be reduced.
Fig. 2.19 shows some examples of the facial feature detection results by directly
applying the Viola-Jones method, where the dots denote the landmark center,

2The second point explains why facial feature detection is even more difficult than face
detection. Face, although with large variation, does possess relatively distinct local structures,
i.e., the specific layout of eyes, nose, mouth, etc, which a random image cannot easily resemble.
Check Fig. 2.7 for some interesting false accepted faces, shown as the support vectors in the
negative class. Those false acceptances are not likely to occur very often though.
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correct                   false rejection       false acceptance

correct                   false rejection       false acceptance

Figure 2.19: Examples of the left eye (upper) and the right mouth corner (lower)
detection results, using the FERET database [172]. Both false rejections and
false acceptances are observed.

and the rectangles denote on which scale the landmarks are detected. The figure
gives a clear view of the underlying risks: concurrent false rejections (miss) and
false acceptances (multiple detections).

To find the facial features in the first place, a common compromise is that
the detectors are tuned at an operation point with a low false rejection rate,
and inevitably a high false acceptance rate. In other words, the facial features
are detected at the cost of many false detections. This gives rise to a large
number (exponentially related to the total number of facial features) of possible
combinations of different facial features. To choose the best one out of them
usually costs extra statistical shape models like in [32][31][20]. In our work,
however, we try to get rid of these additional shape models, thus avoiding the
trouble of learning such models, as well as the additional errors that may be
introduced by them.
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Figure 2.20: ROIs with respect to the detected face rectangle for the left eye
and the right mouth corner.

In the remaining part of Section 2.6, we will present a series of solutions.
These solutions are simple, but in combination they result in a fast, accurate,
and robust facial feature detection system, which works under a large range of
image resolutions and illumination conditions.

2.6.2 Constraining the Detection Problem

The facial feature detection problem can be re-defined as a constrained object
detection problem. Unlike the case of face detection, where faces have sufficient
local structures that a random patch in the background is not quite likely to
coincide with, the facial features have relatively simple local structures that
random patches in the same image could also possess. In order to reduce the
chance of false acceptances, we define the range of facial feature detection to
be only within a constrained region around the true features. In practice this
can be done by first detecting the face, and then setting an approximate ROI
(region of interest) with respect to the detected face rectangle, as shown in Fig.
2.20. The figure shows the effects of ROI on false detections, where the dashed
rectangles indicates the ROI for the left eye and the right mouth corner. The
false detections in Fig. 2.19 (a3) and (b3) are easily eliminated. By reducing
the searching area, this also speeds up the detection considerably.

The constraint not only makes a difference in the detection process, but also
in the training process. Under the new definition, the range of negative training
samples is restricted to be only within the ROI of the facial features, instead
of being arbitrary as in the original Viola-Jones work [179]. This makes the
trained detectors more specific, discriminative, and accurate, as these negative
candidates are most likely to occur during detection. A most discriminative
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combination of Haar-like features will be selected during the training stage to
sharply locate the facial feature within its ROI during the detection stage.

A third benefit is that the ROIs of different facial features constitute a
loose but effective geometric constraint, which is extremely easy to implement,
without the need to learn any parameters for shape representation, like PCA or
conditional probability density function, as is often done in local face registration
methods [32] [32] [20]. Therefore, no further correction or selection based on
geometrical models is needed to refine the detection results, i.e., the detectors
are purely independent3.

2.6.3 Effective Training

For effective training, the selection of facial feature templates is important.
The templates should be as consistent as possible, and at the same time as
discriminative as possible. In Fig. 2.21 we show the original 19 manually labeled
facial feature landmarks from the BioID database [171], and the 13 landmarks
selected by us. Fig. 2.22 shows 5 representative templates out of these 13
(the remaining other 8 templates are similar according to the symmetry). For
effective training, the eye template does not contain any part of the eyebrow,
which possesses much larger variations. For the eyebrow, the two eyebrow ends
(landmark 5,6,7,8) are used as the feature instead of the whole eyebrow region.
For the nose, we use two nostrils (landmark 16 and 17) in combination to add
the local structures. We did not choose the temples (landmark 9 and 14) due
to its ambiguity in texture, nor the upper and lower lip edges (landmark 18 and
19) because it is easily imagined that horizontal shifts are very likely to happen
in detection due to similar textures.

The sizes of the facial feature templates in the training also influence per-
formance. In the work of Viola and Jones [179], a template size of 24×24 is
chosen for finding an entire face. This may lead to the selection of smaller sizes
for the facial feature templates, but it is dangerous to do so. When the size of
a facial feature template is too small, the local structure of this feature will ap-
pear even more insufficient to train a reasonable detector. As in the Viola-Jones
training algorithm, the weak classifiers keep being added until a certain good
performance is achieved, this very possibly results in a detector containing an
enormous number of weak classifiers, which is very slow in detection, but still
not be able to achieve good performance.

3Independent means that the final localization of one facial feature is not dependent on
the detection results of any other landmark positions.
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Figure 2.21: Left: the original 19 manually labeled landmarks from the BioID
database, right: the 13 landmarks selected by us.

(a) (b) (c) (d) (e)

Figure 2.22: The 5 representative facial feature templates: (a) left inner eyebrow
end with size of 10× 10 pixels, (b) left eye with size of 14× 28 pixels, (c) right
inner eye corner with size of 10× 10 pixels, (d) nose with size of 14× 28 pixels,
(e) right mouth corner with size of 20× 20 pixels.
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When the size of a facial feature template becomes too large, on the other
hand, there are other risks. Firstly the detector is much slower to train, because
the number of Haar-like features increases exponentially with the size. Secondly
the inconsistency of texture and shape of the facial feature will play a substantial
role when the details are enlarged. Thirdly the facial feature with smaller sizes
will be missed in detection, like in Fig. 2.19 (a2), as the template size is the
minimal scale to start with. Therefore, the sizes of the facial feature template
should be large enough to contain its structure information, but not too large
to present prominent inconsistency across the facial features. According to the
characteristics of the different facial features, we assign different template sizes
for them. For example, the eyebrow ends and the eye corners, which have larger
variability than other facial features, are assigned smaller template sizes. Fig.
2.22 indicates all the template sizes, which have been validated empirically.

2.6.4 Rescaling Prior to Detection

Rescaling is an important step prior to detection. The true facial feature sizes
are firstly rescaled to the size comparable to the training templates. This is
done by first estimating the feature size based on the detected face size, and
then rescaling the face region accordingly. Fig. 2.23 illustrates how the rescal-
ing of face regions help to reduce the false rejections, and eliminate the false
acceptances.

To evaluate the effect of introducing the rescaling, we introduce a quantita-
tive measure d of the landmarking accuracy, which can be expressed by

d =
∑i=N

i=1

√
(xi − xg,i)2 + (yi − yg,i)2

N ·Di
(2.12)

where N is the number of detected landmarks, xi, yi are the detected coordinates
of the ith landmark, and xg,i, yg,i are the ground truth coordinate of the ith

landmark. Di is the inter-ocular distance. This accuracy measure d indicates
the relative error of detection.

To evaluate the benefits of rescaling, the test is done across a large num-
ber of images, and the accumulative histogram of d is calculated. The reason
for accumulative histograms is that they are much easier to compare than his-
tograms. To illustrate the benefits of rescaling, we performed tests on the above
mentioned 5 facial features for the BioID database at three face sizes: 100×100
(small), 200× 200 (rescaled), 500× 500 (large). Fig. 2.24 shows the accumula-
tive histogram of d for the 5 landmarks and all the 13 landmarks. Note that d
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upscale

downscale

Figure 2.23: Rescaling of the face region for more accurate and robust facial
feature detection Up: upscale the small-size face and find the missed landmark.
Example is from the FERET [172] database, with the cropped size of 200×200.
Down: down scale the large-size face and eliminate the false detections. Example
is the high resolution image from the FRGC [173] database, with the cropped
size as high as 1000 × 1000. On the right column, the face regions have been
resized to 200× 200 prior to detection.
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size 100 − dr 29.5048%

size 200 − dr 97.5928%

size 500 − dr 95.8735%

size 100 − dr 33.3563%

size 200 − dr 98.2806%

size 500 − dr 87.5516%

size 100 − dr 2.0633%

size 200 − dr 72.6547%

size 500 − dr 87.5516%

size 100 − dr 16.7125%

size 200 − dr 95.4608%

size 500 − dr 93.0536%

size 100 − dr 21.7331%

size 200 − dr 93.6726%

size 500 − dr 88.3081%

size 100 − dr 25.0608%

size 200 − dr 92.3402%

size 500 − dr 91.9741%

Figure 2.24: The accumulative histogram of d: dashed line - small size 100×100,
solid line - rescaled size 200×200, dotted line - large size 500×500. The detection
rate dr is also indicated.

is averaged on all the detections, including the false detections. The detection
rate, i.e. the percentage of detection, is also indicated in the figure.

Fig. 2.24 indicates that the rescaling size 200 × 200 gives the best perfor-
mance with respect to both detection error and detection rate. For sizes too
small, too many landmarks are missed: in total only about 25% of the landmarks
are detected. For sizes too large, d is in general much larger, indicating there
are a lot of false detections. The above experimental results clearly indicates
that the simple rescaling procedure eliminates most of the false acceptances,
saving considerable trouble in the later stage of post-selection.

2.6.5 Post-Selection using Scale Information

A single correct detection within the ROI is the ideal case for facial feature
detection, as is the purpose of all the aforementioned solutions. As will be
shown later in Fig 2.30 to 2.32, a single correct detection with the ROI is indeed
realized in many cases, indicating that the proposed solutions are effective. In
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Figure 2.25: Examples of false acceptances for the 5 facial features, both type I
and type II false acceptances are included.

some other cases, under more difficult conditions, however, false acceptances
and false rejections are still unavoidable. False acceptances, in particular, is the
problem that many local face registration methods try to deal with.

The problem of false rejections, i.e. missing of facial features, can be allevi-
ated by training as many facial feature detectors as possible. For example, face
registration, which is the main application of facial feature detection, can be
reliably done given 3 or more accurately detected facial feature landmarks. The
total 13 facial feature detectors, therefore, give room to 11 missing features. An
image is not taken into consideration if more than 11 features are missing. We
believe that when there is not enough information in the image for the well-
trained detectors to localize 3 facial features, reliable face recognition or other
face interpretation tasks cannot be expected either.

To look into the false acceptance problem, it is helpful to first examine what
type of false acceptances will occur. Fundamentally, the Viola-Jones detector
uses a combination of local structures as the template, so all the patterns that
have more or less similar structures are likely to be detected. In modeling the
false acceptances, two types of false acceptances can be identified. The type
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I false acceptance is acceptance of the background patches coincidentally have
comparable local structures. Examples are the chin region with shadows in Fig.
2.19 (a3), and the spot under eye in Fig. 2.23, both of which are mistaken as
eyes. The type II false acceptances is the acceptance of the patches centered at
approximately the same position as the true facial features, but larger in sizes,
as shown in Fig. 2.19 (a3) left eye region. This can be explained by the fact
that the facial landmarks are always located at the center of the facial feature
templates, as shown in Fig. 2.22. Therefore, when searching on a slightly coarser
(larger) scale around this center point, the patch still have similar structure as
the true facial feature patch, and will be still bounded by the detection template
in a looser way. Examples of both type of errors are shown in Fig. 2.25, in which
the rescaling and the ROI constraints have already been applied. An additional
geometrical constraint model can possibly eliminate the type I error, but in
principle cannot deal with the type II error.

We observed from experiments that the type I false acceptances does not
occur very frequently, as shown by examples in Fig. 2.25, indicating that they
are mostly eliminated by the rescaling and the ROI constraints. The second
type of false acceptances, in comparison, occurs more often. Although they are
also reasonable detections, their locations are not accurate enough due to the
coarser scales.

We propose to incorporate the scale information to provide more insight. It
is interesting to notice that the accuracy of the detected facial feature is to a
certain extent determined by the scales on which the facial feature is detected.
Based on the above observations and analysis, we extracted a simple principle to
remove the false acceptances: minimal-scale detection within the maximal-scale
detection. The reasoning of this principle is directly related to the mechanism of
the Viola-Jones method: firstly, the detections within the maximal-scale detec-
tion have less chance of being the type I false acceptances (i.e. random errors),
as they have been confirmed several times by the overlapped detections. Sec-
ondly, the minimal-scale detection within the maximal-scale detection is most
likely to be the accurate one, as it is bounded by the template in the tight-
est manner, or in other words, it is detected on the finest scale. The type II
false acceptances, therefore, are employed as extra information to confirm the
localization but are finally eliminated. The applicability of this principle can be
illustrated by Fig. 2.25.

The accumulative histogram of d defined in (2.12) is drawn in Fig. 2.26
for the detection before and after applying the post-selection principle. Before
selection d is averaged on all the detections. It can be seen from Fig. 2.26 that
the error d is reduced by feature selection, indicating that many false acceptances
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Figure 2.26: The accumulative histogram of d: solid line - before feature selec-
tion, dashed line - after feature selection.

are eliminated. For certain facial features, for example the nose, the reduction
is not obvious, due to the fact that the multiple nose detections turned out to
be mostly concentric.

2.6.6 Experiments and Results

The training of the facial feature detectors is done using the same scheme as
in [179]. The BioID database [171] with manually labeled landmark positions
is used to obtain both the positive training samples and the negative training
samples in the corresponding ROI. For each detector, a positive set of 6,000 and
a negative 10,000 is set for the Adaboost training as an empirically good choice.
In our work 15 cascades are taken, each with a detection rate of 99.95% on the
training set. Fig. 2.27 shows the number of weak classifiers in each trained
cascade. Again we take the 5 examples in Fig. 2.22. It can be noticed from the
table that the eyes and nose detectors have lighter structure (fewer component
Haar-like features) than the others. This can be explained by the fact that eyes
and noses have relatively consistent and abundant local structures compared
to others, which is more favorable for the AdaBoost training. It can also be
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Figure 2.27: Number of weak classifiers in each trained cascade, for the 5 facial
feature detectors in Fig. 2.22.

observed that the eyebrow ends are the most difficult to train, due to its large
variability on simple structures.

One of the big advantages of Viola-Jones detector is its generalization ability.
Once trained on a proper data set, the detector can be applied to the objects
under a large range of imaging conditions. To test the generalization of the
facial feature detectors, we apply the detectors trained on the BioID database
to the FERET [172] and the FRGC [173] database low resolution data. In
these two test set, there are 4 manually labeled facial landmarks as the ground-
truth information: left eye, right eye, nose tip, and mouth center. Differences
exist in the definition of landmarks as we use the center of two nostrils and the
two mouth corners. The average of the two mouth corners can be taken as an
estimate of the mouth center in the X coordinate, but discrepancies still occur
on the Y coordinates. For fair comparison, we compare only the X coordinates
of the nose and the average mouth. The accumulative error d are calculated.
Fig. 2.28 shows the accumulative error for 4 facial landmarks.

It can be seen from Fig. 2.28 that the facial feature detectors have similar
performance on the training set and the testing set. This generalization ability
enables the facial feature detection under a large range of image conditions.
Detection results from different databases, arbitrary Internet and real life images
are shown in Fig. 2.30, 2.31, and 2.32.

Another big advantage of the Viola-Jones detector is its speed, which the fa-
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Figure 2.28: The accumulative histogram of d: solid line - BioID dataset (train-
ing)), dashed line - FERET dataset (testing), dash-dot line - FRGC dataset
(testing).
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cial feature detectors readily inherit. As real-time Viola-Jones face detection has
already been realized, our facial feature detectors working in confined ROIs with
controlled number of cascades can also achieve real-time performance, around
25 frames per second on a Pentium 4, 3.2GHz CPU. It is noteworthy that the
post-selection is extremely simple and fast, virtually taking no time.

Finally we compare our detector with the results of the other two state-of-
art facial feature detection approaches, which are also based on the Viola-Jones
method. In both approaches, the Viola-Jones facial feature detectors are ap-
plied first, producing facial feature landmark candidates. In the first approach,
CSS (combinatoric shape search) [31] determines the best combination of candi-
dates by shape guided search. In the second approach, a multistage framework
is adapted [32], in which the Viola-Jones feature detector, a shape constraint
model PRFR (pairwise reinforcement of feature responses), and a AAM (active
appearance model) are applied in sequence for gradually refined landmark po-
sitions. Fig. 2.29 shows the comparison results of the d on the 4 landmarks: 2
eyes and 2 mouth corners.

Given that the same type of facial feature detectors are used, we can consider
the comparison as the one on the post-selection method. Fig. 2.29 indicates
that our post-selection methods are effective, despite the simplicity. The reason
is that the model we build for the false acceptances, type I and type II, is more
accurate than a probabilistic model with respect to the detector. The false
acceptances are not distributed in a continuous way around the true landmarks.
The type I false acceptances are more often randomly spread, and the type II
false acceptances are concentrated around the true positions. Moreover, when
there exist type II false acceptances, the true detection is most likely to be
present. Therefore, it is more interesting to single out the true one directly
based on the judgment of the detectors (i.e., scale and overlapping information),
than to estimate or correct it from the pool of uncertain detections, based upon
its relationship to other facial features in a probabilistic manner. The proposed
post-selection principle, therefore, is more accurate because it takes maximal
advantage of the accuracy of the optimized Viola-Jones detectors, and does not
include any extra errors from the additional shape or texture models.

2.6.7 Face Registration Based on Landmarks

Face registration can be done easily by aligning the detected landmarks to the
corresponding reference facial feature landmarks. The parameter of translation,
scaling, and rotation can be calculated accordingly.

Suppose the detected landmarks are denoted by Xinput, in which the ele-
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Figure 2.29: The accumulative histogram of d: solid line - BioID dataset (train-
ing)), dashed line - FERET dataset (testing), dash-dot line - FRGC dataset
(testing).

Figure 2.30: Examples from the BioID, FERET, and YaleB databases.
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Figure 2.31: Examples from the Internet, unconstrained face images.

ments in the first column denote the x-coordinates of the detected landmarks,
the elements in the second column denote the y-coordinates of the detected
landmarks. The number of rows corresponds to the number of detected land-
marks. X0 denotes the corresponding standard landmarks to which Xinput is
aligned. Assume s is the scaling factor, θ is the rotation angle, x is the shift in
x-direction, and y is the shift in y-direction. The registration can be expressed
by

T =

⎛
⎝ s cos θ s sin θ
−s sin θ s cos θ

x y

⎞
⎠ , (Xinput,1) T = X0 (2.13)

where T is the 3 × 2 transformation matrix, 1 is a column vector with all 1’s.
The solution of (2.13) in the least square sense is

Xt = (Xinput,1) , T = (XT
t Xt)−1XT

t X0 (2.14)

Once T is known, s, θ, x, and y can be extracted from it and then applied
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Figure 2.32: Examples of real life unconstrained face images.

to the face image. We show the fully automatic face registration system in Fig.
2.33.

2.7 Summary

This chapter presents a detailed study of face detection and face registration,
which are important prior steps for any face interpretation tasks. The impor-
tance is in two senses: firstly, the accuracy of face detection and registration
directly influences the performance of subsequent face recognition; secondly, face
detection and registration is often the most time-consuming part of the entire
face recognition system.

Face detection is not as easy for computer vision as for human cognition,
due to the large variations of the human faces that cannot be easily decoded.
Different methodologies have been proposed in literature, as reviewed in Section
2.2. We adapted the well-known Viola-Jones detection methods specifically for
our face detection problem on an MPD. The method combines simple Haar-like
rectangle features, complex Adaboost training, and efficient cascaded classifier
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Figure 2.33: Diagram of the automatic face registration system.

structures. The difficulty of the problem is mostly diverted to the long and
tedious training, whereas in detection the method works extremely fast. This
resembles the natural human learning process, in that much time is spent in
the infancy and childhood for learning, and high-complexity recognition ability
is reached later on. In Section 2.4, adaption has also been made to boost the
performance even further for our specific application.

Inspired by the good performance of the Viola-Jones method on face de-
tection, we optimized the method for facial features, in order to realize a fast,
accurate, and robust face registration system that has not been achieved be-
fore. The inherent insufficiency of the facial features, i.e., the inconsistent and
inadequate structure that account for the failure of most facial feature detec-
tors, have been thoroughly analyzed. In our work, this underlying difficulty
are circumvented by a sequence of efficient solutions, namely, re-definition of
the problem, regulations for effective training, re-scaling prior to detection, and
strategies for post-selection. The resulting facial feature detectors are com-
pletely self-standing, without any additional shape or texture constraints that
are usually required in many other methods for further processing (often in an
iterative way). The trouble of learning such constraint models, together with
the possible modeling error, are avoided. The biggest advantage of the proposed
solutions over the previous work is the high accuracy at high simplicity. The
efficiency of the solutions can be demonstrated by the error curves in Section
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2.4, and the facial feature detection results in Fig. 2.30, 2.31, and 2.32. With
the face detection and registration both implemented in such a fast, accurate,
and robust manner, the whole system is expected to benefit greatly.
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Chapter 3

Face Verification

3.1 Introduction

1As one of the most successful applications of image analysis and understand-
ing, face recognition has received significant attention during the past decades.
For an extensive survey, see [24], [191]. A general statement of the face recogni-
tion problem can be formulated as follows: given an image, identify the person
in the scene or verify his or her identity using previously learned knowledge.
Identification and verification are the two most important applications of face
recognition, different in the number of subjects involved. In identification, there
are multiple subjects in the gallery, and the output of identification should be
the identity corresponding to the input face2. In verification, in contrast, there
is only one subject involved, and the output of verification should be a binary
decision: true or false. Simply speaking, the identification is a multi-class clas-
sification problem, whereas the verification is a two-class classification problem.
Because of our application, we are most interested in face verification.

Although different in definition, identification and verification are very close
face interpretation topics to study, for they both involve the same two essential
parts: firstly, extracting features from the face image, and secondly, classifying
those features. This is again similar to what is discussed in Section 2.2 for face

1This Chapter is based on the publication [158], [157], [41].
2Identification normally refers to a closed-group identification, meaning that the input

image always belongs to a subject inside the gallery. Depending on application, identification
sometimes may also be open-group, meaning that the input image can possibly be from
subjects outside the gallery. In this case, the output is an identity number or ”not found”.
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detection.
The remainder of this chapter is organized as follows. Section 4.2 reviews

the face recognition methods in literature, in two categories: holistic methods
and local structural methods. Section 6.2.1 proposes to use the theoretically
optimal likelihood ratio classifier for our face verification problem, and Section
3.4 elaborates the methods we used for dimensionality reduction of the feature
vectors before applying the likelihood ratio classifier. Section 3.5 shows the
experimental results of our proposed methods, and Section 4.7 summarizes this
chapter.

3.2 Review of the Face Recognition Methods

A great many face recognition methods have been proposed during the past
decades. Often, a face recognition system involves techniques motivated by
different principles. It has been suggested in some psychological studies that the
human perception system uses both holistic and local features for recognition
of the face [19] [46]. Following this guideline, we categorize the face recognition
methods in three large groups:

• Holistic Methods
These methods use the face region, usually the image pixel intensities
concatenated as a feature vector, as the input to a classifier.

• Local Structural Methods
These methods only extract certain parts from the face that are of interest,
such as the facial feature locations, and the textures in the locality of facial
feature. In addition, those parts are structurally connected.

• Hybrid Methods
Hybrid methods combine both the holistic and local features.

We will mainly review the first two categories of methods, and the hybrid
methods follows by fusing the holistic and local facial features.

3.2.1 Holistic Face Recognition Methods

Eigenface [167] and Fisherface [7] are two of the most well-know holistic face
recognition methods. There are also many variants of them in literature [192]
[190] [189] [85] [87] [151] [33]. Based on the fact that significant statistical re-
dundancies exist in natural images [136], they both derive globally compact
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Figure 3.1: Example of eigenfaces (above) and Fisherfaces (below) [191].

representation of the face, but under different criterions: minimum reconstruc-
tion error and maximal separation, respectively. The mathematical derivations
of eigenface and Fisherface are just the same as PCA and LDA, which has been
introduced in Section 2.2.2, but with a major difference in the definition of
classes. As a matter of fact, we can see that except for the class definition, face
recognition and classification-based face detection are similar problems to solve.

In the eigenface method, an optimal projection is obtained based on the
criterion of minimizing the reconstruction error. The columns of the projection
matrix are called ”eigenfaces”, which preserve the most of the energy, i.e., cor-
responding to a number of the largest eigenvalues. Consequently, any sample
face vector can be expressed by a linear combination of the eigenfaces. This
face representation has a reduced sensitivity to noise, blurring, and partial oc-
clusion [191]. By means of eigenface, an originally very large face vector of the
concatenated pixels (usually in the order of 10,000) can be reduced to a much
smaller coefficient vector (usually less than 100). The identification is done by
assigning the sample face image to the identity of the one in the gallery whose
coefficient vector is the closest, i.e., with the smallest Euclidean distance. Fig.
3.1 shows some examples of the eigenfaces in the top row. Obviously, the eigen-
faces can be interpreted as the base for the face space, accounting for different
variations. An extension of eigenface is the eigenspace approach in the hybrid
manner [122], in which both the global eigenfaces and the local eigenfeatures,
such as eigeneyes and eigenmouth, are used for face recognition.

In the Fisherface method, analysis of two scatter matrices is carried out. The
optimal projection is obtained based on the criterion of maximizing the ratio
between determinant of the between-class scatter matrix and that of the within-
class scatter matrix. Solving the problem results in a projection matrix with
c−1 columns, where c is the number of classes. Those columns of the projection
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Figure 3.2: Intra-personal eigenfaces (above) and extra-personal eigenfaces (be-
low) [108].

matrix are called ”Fisherfaces”. Similar to the eigenface method, any sample
face vector is then expressed by a linear combination of the Fisherfaces. This
means that the original face vector is reduced to a coefficient vector of length
c − 1. Identification is again done by calculating distances between the input
and the template coefficient vectors. In contrast to the eigenface method, the
Fisherface method is a supervised learning method which makes use of the class
information. It has been reported that the Fisherface method can outperform
the eigenface method in recognition error [7] [47]. Fig. 3.1 shows some examples
of the Fisherfaces in the bottom row. Unlike the eigenfaces, the Fisherfaces do
not resemble human faces in a global way, instead, they represent the difference
between classes, mainly in details.

Instead of using distances between the coefficient vectors, a probabilistic
measure of similarity is used in [108] [110] [109], in which the standard eigen-
face approach is extended to a Bayesian approach. The multi-class problem is
transformed to a two-class one, with two mutually exclusive classes defined: ΩI

representing the intra-personal variations between multiple images of the same
subject, and ΩE representing the extra-personal variations due to differences in
identity. Assuming that both classes are Gaussian-distributed, likelihood func-
tions p(Δ|ΩI) and p(Δ|ΩE) are estimated from the given difference Δ = Ii− Ij ,
where Ii and Ij are holistic feature vectors. Using the maximum a posteriori
(MAP) rule, two face images are determined to belong to the same subject if
p(Δ|ΩI)
p(Δ|ΩE) > 1, or not if otherwise. Considerable performance improvement over
the eigenface and Fisherface methods has been reported in the large scale ven-
dor test of 2000 [125] on the FERET database [172]. We show in Fig. 3.2 the
eigenfaces of the intra-personal face space and the extra-personal face space.
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Figure 3.3: ICA basis images using two architectures: left - Architecture I, right
- Architecture II [4].

Larger variations can be observed in the extra-personal face space, while subtle
variations due to expressions and lightings are presented by the intra-personal
face space.

PCA, LDA, and the Bayesian approach take advantage of the information
up to the second order statistics of the training data. Based on the argument
that important information is contained in higher order statistics, independent
component analysis (ICA) has been proposed to solve the face recognition prob-
lem [4] [86] [42]. ICA is a generalization of the PCA analysis, in the sense that
it decorrelates the higher-order moments in addition to the second-order one.
Two ICA architectures have been proposed for face recognition: the first is a set
of statistically independent source images as independent image features (Ar-
chitecture I), and the second is a set of image filters that produce statistically
independent outputs (Architecture II). Fig. 3.3 shows the basis images derived
using the two distinct architectures. It is easily seen that they provide different
interpretations of the face image statistics. The basis images from the Archi-
tecture I are spatially local, whereas the basis images from Architecture II are
more global, similar to eigenfaces. For recognition, the input face is decomposed
onto the ICA basis, and a cosine distance is calculated between the coefficient
vectors between the input image and the gallery image [4].

Fig. 3.1, 3.2, 3.3 all show the basis face images derived under different
criterions, on which any input face image can be decomposed. This is typical

59



of the holistic face recognition methods, in that analysis is carried out on the
holistic content of the face images, and as a result, the basis images are global3.
In the same manner, many other analysis methods on the holistic face can been
applied as well, such as neural networks [93], support vector machines [61] [59],
evolutionary pursuit [100], etc.

The holistic face recognition methods look on the face as a whole, and this
resembles the situation when we see people from a distance or in small photos,
in which situation our visual system can only catch an overall image of the faces.
In such cases, most often we are still able to recognize the faces. This suggests
that good classification may not necessarily need a very detailed face image.

3.2.2 Local Structural Face Recognition Methods

It is natural to think of recognizing faces in a locally structured manner, for
example, matching the input and gallery faces from eye to eye, and mouth to
mouth. In the literature, many local structural methods has been proposed, like
matching of local feature geometry [83] [3], 1D and pseudo 2D hidden Markov
models [140] [139]. Early methods of this category are often limited by their
simplicity as they mostly use points or lines, and thus insufficient to represent
faces. The Elastic Bunch Graph Matching (EBGM) method, which incorpo-
rates more powerful local feature descriptors, i.e. wavelets, is one of the most
successful local structural methods [184].

As shown in Fig. 3.4, the graph representation of a face is based on the
Gabor wavelet transform, a convolution with a set of wavelet kernels. The set
of 40 coefficients (5 frequencies × 8 orientations) obtained for one image point
is referred to as a jet. A sparse collection of such jets together with information
about their relative locations constitutes an image graph. The resulting bunch
graph contains local texture information by the jets, and global structural infor-
mation by the graph. Face recognition is based on straightforward comparison
of image graphs. The locally estimated wavelet coefficients are robust to illumi-
nation, translation, distortion, rotation, and scaling. Besides, the graph allows
considerable pose differences. The EBGM method have been applied to systems
of face detection, recognition, pose estimation, and general object recognition
tasks.

The EBGM method is typical of this category of face recognition methods,
in which local features are analyzed, while structural geometrical constraints are

3In Fig. 3.3, the basis images from Architecture I represent local features, but the method
still differs from local methods in that the local features are derived from the analysis of the
holistic face images, instead of from the local analysis of facial parts.
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(a) (b) (c) (d) (e)

Figure 3.4: The bunch graph representation of the face using elastic graph
matching[184]. From left to right: (a) input image, (b) wavelets, (c) convoluted
results, (d) jet, (e) bunch graph.

used as additional information. The method is in analog to the situation when
we look at a person at a close distance so that we can examine the textures,
shapes, and tones of his or her facial features in much detail. In turn, for
the EBGM method, this implies a relatively high-resolution image, from which
the wavelets (corresponding the biological receptors on the retina) can extract
necessary local textural information. For the same reason, sufficient resolution
is a prerequisite for most local methods. In contrast, holistic methods are less
demanding on the image resolution, as they does not particularly concentrate
on the details of certain facial features.

3.3 Likelihood Ratio Based Face Verification

In the previous section, we have discussed face recognition methods in general,
and reviewed the methods in two large categories: holistic methods and local
structure methods. In this section, we will return to our specific face verification
problem on the MPD. Due to the limited resolution and quality of the MPD
images, we adopt the holistic approach, i.e., using the registered face image4 to
derive holistic feature vectors.

Although similar to the face detection problem, which has been discussed in
Chapter 2, in the sense that both are two-class classification problems, the face

4The registered face image should first be preprocessed to exclude certain external in-
fluences. In this chapter, we only apply some simple preprocessing techniques, while more
complicated preprocessing will be presented in Chapter 4.
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bg

Figure 3.5: The user class and the background class.

verification can hardly achieve as good performances as face detection. The
reason is that the two classes in the verification case, the user class and the
impostor class, are more closely distributed in the feature space than the two
classes in the detection case, the face class and the non-face class. In other
words, the margins between the classes are much smaller. This implies that the
boundary-based classification methods, like the SVM which relies explicitly on
the support vectors, or the Viola-Jones Adaboost method which relies implicitly
on the highly-weighted samples, are not suitable for the verification problem
as such. In the detection case, a margin-based two-class classifier may still
have satisfactory performances even if the margin is not perfectly optimized, as
the distributions of the samples in both class over the margin region are really
sparse. In the recognition case, the situation is different. The overlapped regions
in the feature space need to be accurately classified with minimal possible error,
from a statistical point of view. For this reason, we propose to verify the feature
vectors in a statistically optimal way using the likelihood ratio. In this method,
the two classes are conceptually modeled as two clouds in a high-dimensional
space, one encompassing the other, as shown in Fig. 3.5. Our aim is to find the
classification rule that yields the best performance in the statistical sense.
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3.3.1 Likelihood Ratio as a Similarity Measure

Likelihood ratio is a similarity measure between an input feature vector x and
the two opposite classes: ω = ωuser and ω̄ = ωbg. In this section, we will first
introduce two geometrical similarity measures: the Euclidean distance and the
Mahalanobis distance, and then introduce the Bayesian posterior probability
and the likelihood ratio as two statistical similarity measures.

Euclidean Distance

Euclidean distance is simply calculated by

dEucl(x) =
√

(x− T )T(x− T ) (3.1)

where x is the input feature vector and T is the template feature vector. The
Euclidean distance treats all elements of the feature vector as equally important
and uncorrelated. Any other information of the user and the background classes
are ignored.

Mahalanobis Distance

Mahalanobis distance takes into consideration of the correlation between the
elements of the feature vector by introducing the covariance matrix Σ. The
distributional information of the user class is therefore included.

dMaha(x) =
√

(x− T )TΣ−1(x− T ) (3.2)

where Σ is calculated from the training feature vectors

Σ =
1

N − 1

N∑
i=1

(xi − x̄i)(xi − x̄i)T (3.3)

with xi, i = 1, ..., N the training samples, and x̄i = 1
N−1

∑N
i=1 xi.

Posterior Probability

Different from the previous two geometrical measures, the posterior probability
and likelihood ratio are in the statistical sense. Posterior probability is the
optimal statistic in the Bayesian sense

p(ω|x) =
p(x|ω)p(ω)

p(x)
=

p(x|ω)p(ω)
p(x|ω)p(ω) + p(x|ω̄)p(ω̄)

(3.4)
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where p(x|ω) is the probability density of x given the class ω, p(ω) is the prior
probability of the class ω, p(ω̄) is the prior probability of the class ω̄, and p(x)
is the probability density of x in the whole space ω ∪ ω̄.

Likelihood Ratio

The likelihood ratio is an optimal statistic in the Neyman-Pearson sense [174]:
at a given false acceptance rate (FAR), the likelihood ratio achieves a minimal
false rejection rate (FRR); or at a given FRR, the decision-fused classifier reaches
a minimal FAR. Likelihood ratio has been long known as the optimal statistic
in the detection theory [174], and the verification problem is very similar. The
likelihood ratio is defined as

L(x) =
p(x|ω)
p(x|ω̄)

(3.5)

Since we assume infinitely many subjects in the sets ω∪ ω̄, exclusion of a sin-
gle subject ω from it virtually does not change the distribution of x. Therefore,
the following holds

p(x|ω̄) = p(x) (3.6)

The likelihood ratio contains the full distributional information of two op-
posite classes. Besides, it has simpler form than the posterior probability as the
prior probabilities p(ω) and p(ω̄) are not needed.

It will be shown later that under the Gaussian assumption, the statistical
similarity measures are very closely associated with the Mahalanobis distances.

3.3.2 Probability Estimation: Gaussian Assumption

To obtain the likelihood ratio of an input feature vector x with respect to two
classes ω and ω̄, the probability density functions of the two classes p(x|ω) and
p(x|ω̄) should first be estimated. The Gaussian assumption is often applied
on a large set of data samples after an appropriate transform such as PCA or
LDE, motivated by the Central Limit Theorem [44]. The multivariate Gaussian
distribution is expressed by

p(x) =
1√

(2π)d|Σ| exp
(
− (x− μ)TΣ−1(x− μ)

2

)
(3.7)
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where μ is the mean feature vector, Σ is the covariance matrix, d is the dimen-
sionality of the feature vector. Given N sample feature vectors of the face xi,
i = 1, ..., N , both μ and Σ can be easily estimated

μ =
1

N − 1

N∑
i=1

xi, Σ =
1

N − 1

N∑
i=1

(xi − μ)(xi − μ)T (3.8)

To avoid the influence of extreme samples, which are possibly caused by ex-
traordinary illumination, pose, expression, or mis-registration, μ can also take
the median of the sample vectors at every element: μ = median(x1, ..., xN ).

The two classes involved in face verification are the user class ωuser and the
non-user background class ωbg. Equivalently, the likelihood ratio in (3.5) can
be rewritten

lnL(x) = ln puser(x)− ln pbg(x)

=
1
2

(
ln |Σbg|+ (x− μbg)TΣ−1

bg (x− μbg)
)

−1
2
(
ln |Σuser|+ (x− μuser)TΣ−1

user(x− μuser)
)

=
1
2

(
(x− μbg)TΣ−1

bg (x− μbg)− (x− μuser)TΣ−1
user(x− μuser)

)
+ c

(3.9)

where μuser, μbg, Σuser, Σbg are the means and covariances of the user class and
background class, respectively. The second term c = 1

2 (ln |Σbg| − ln |Σuser|) is a
constant that can be absorbed into the thresholds of the likelihood ratio without
influencing the final ROC. As (4.23) shows, the logarithm essentially reduces
the probability measure to the difference between the two squared Mahalanobis
distances in the user and the background class.

3.3.3 Probability Estimation: Mixture of Gaussians

The Gaussian model is a simple and useful model, however, it might oversimplify
the situation in cases of arbitrary, complicated feature vector distributions. In
contrast, Gaussian mixture models (GMM) are able to represent much more
complex probability density functions. The model is expressed as

p(x|Θ) =
K∑

i=1

wip(x|θi) (3.10)
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where θi = {μi, Σi} is the parameters of the ith Gaussian pdf p(x|θi), wi is the
weight or the prior of the ith component, satisfying wi > 0 and

∑N
i=1 wi = 1,

and K is the total number of the components. Therefore, the whole unknown
parameter set is: Θ = {K, w1, ..., wK , θ1, ..., θK}.

Given the sample set X = {x1, ..., xN}, the standard method to fit this model
with the sample data is the expectation-maximization (EM) algorithm, which
is an iterative procedure to find the maximum likelihood (ML) estimate of the
mixture parameters Θ [105] [106].

log p(X|Θ) = log
N∏

i=1

p(xi|Θ) =
N∑

i=1

log
K∑

j=1

wjp(xi|θj) (3.11)

Θ̂ = arg max
Θ
{log p(X|Θ)} (3.12)

The EM algorithm interprets X as incomplete data in the way that the
associations between the samples xi, i = 1, ..., N and the Gaussian mixture
components p(x|θj), j = 1, ...,K are missing. Assume the missing information
is contained in Y, Y = {y1, ..., yN}, where yi ∈ {1, ...,K}, meaning that if
yi = k, the ith sample is generated from the kth mixture component. Given Y
and X , the likelihood of mixture parameter Θ is

logL(Θ|X ,Y) = log p(X ,Y|Θ) =
N∑

i=1

log wyip(xi|θyi) (3.13)

The EM algorithm works in a nested way with two alternating steps: estima-
tion and maximization. Given the current estimate of Θ(t), the posterior rela-
tionship between the samples and the Gaussian components, i.e., p(yi|xi, Θ(t)),
can be estimated using the Bayes’ Rule

p(yi|xi, Θ(t)) =
wyi

(t)p(xi|θyi
(t))

p(xi)|Θ(t)
=

wyi
(t)p(xi|θyi

(t))∑K
k=1 wk(t)p(xi|θk(t))

(3.14)

and

p(y|X , Θ(t)) =
N∏

i=1

p(yi|xi, Θ(t)) (3.15)

where y = (y1, ..., yN ) is an instance of the yi’s, i = 1, ..., N .
Plug (3.46) into log(X ,Y|Θ), the target function to be maximized, which is

also called Q-function, is defined as
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Q(Θ, Θ(t)) ≡ E [log p(X ,Y|Θ)|X , Θ(t)]

=
∑
y∈Y

log (L(Θ|X ,y)) p(y|X , Θ(t)) (3.16)

where Y is the space of vector y.
The maximization step is to update the estimation of the Gaussian mixture

parameters by maximizing the estimate acquired in the previous step

Θ(t + 1) = arg max
Θ

Q(Θ, Θ(t)) (3.17)

The iterative process is repeated until convergence of the Q function. The
EM method has been shown to monotonically increase the likelihood in (3.13).

Despite the popularity of the EM algorithm, there are two intrinsic draw-
backs, typical of any iterative optimization algorithms, namely, sensitivity to
initialization and possibility of convergence to the boundary of the parameter
space. To avoid such problems, strategies like multiple random initialization
[60] and deterministic annealing [169] can be incorporated. Besides, compared
to the single Gaussian model, the GMM method is much more computationally
expensive. In Section 3.5, we will show experimental results of likelihood ratio
based face verification using GMM models, and compare the results with those
of single Gaussian models.

3.4 Dimensionality Reduction

Face images normally lie in a very high-dimensional space. For example, a
moderate-sized face image with 50 × 50 pixels already has a dimensionality of
2,500. High dimensionality causes problems for pattern recognition tasks, well
known as the curse of dimensionality. Basically, high dimensionality implies
a high number of parameters for characterizing the samples, which number
typically grows substantially with the dimensionality of vector space [44] [96].
Taking the single Gaussian model for example, suppose the feature vector x has
a dimensionality of d, then there are in total d + (d+1)d

2 parameters to estimate
for μ and Σ. For the GMM model, the number is even much higher.

As a result, the number of training samples needed to efficiently represent the
high-dimensional data is prohibitively high. In practice, it is often impossible
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Figure 3.6: The face image pyramid with different scales.

to collect such a huge number of training samples. The reduction of the feature
vector dimensionality is therefore a popular research topic. In this section, we
will discuss three dimensionality reduction methods, namely, image rescaling
and ROI, feature selection, and subspace method.

3.4.1 Image Rescaling and ROI

Image rescaling is the easiest way to reduce the dimensionality of the feature
vectors. A larger face image certainly contains more information and represents
the face in better detail, but the question is, what is the sufficient scale for the
face recognition purpose? See Fig. 3.6 for the face images at different scales. In
[14], it is suggested that at the face image resolution of 32×32, the PCA/LDA-
based face recognition system yields the optimal recognition performance, while
higher resolutions are not more favorable for recognition. Another interesting
example is the Viola-Jones face detector, which uses the face template as small
as 24× 24, but still achieves surprisingly good detection performance [179]. For
the human cognition system as well, very often we do not need a large photo
to recognize a person, for example, when trying to find someone from a photo
with a group of people, see Fig. 3.7, each represented in small resolution.

The dimensionality of the feature vector actually denotes its degree of free-
dom, and therefore the extent to which it can vary. For the identification prob-
lem, the degree of freedom must be able to characterize the differences between
different subjects, and for the verification problem, the degree of freedom must
allow the characterization of the difference between the user and the background
class (non-users). In Section 3.5, we will carry out experiments within the like-
lihood ratio verification framework, and find the minimal possible scale for the
purpose of dimensionality reduction.

Besides image rescaling, the ROI (region of interest) in the face is also worth
investigating. A well-chosen ROI can effectively reduce the dimensionality of
the feature vector, and at the same time excludes the undesirable influences of
certain facial components, which are subject to high variability. We will also
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Figure 3.7: A group of people with each face of very small resolution but still
recognizable.

show the positive effects of assigning a ROI on the verification performance in
Section 3.5.

3.4.2 Feature Selection

Another method of dimensionality reduction is to directly select a number of
feature entries from the feature vector. In the face verification context, this can
be intuitively understood as automatically selecting a ”mask” or ROI in the
face region.

Suppose the original feature set is F = {f1, ..., fd}, and the reduced feature
set is Fk = {fidx1 , ..., fidxk

}, (k < d). The problem is formally defined as
follows: given the input samples and the target classification criterion, the aim
of feature selection is to find k dimensions from the original d dimensions, so
that the predefined criterion is optimized [121] [72] [90].

The target classification criterion often refers the minimal classification er-
ror. This error, however, is closely related to the classifier that is applied af-
terwards, and is therefore classifier-specific and sensitive. Instead, we adopt an
classifier-independent, information theoretic criterion: maximal mutual infor-
mation between the feature vector and the class, defined by

I(f ; c) =
∫∫

p(f, c) log
p(f, c)

p(f)p(c)
dfdc (3.18)

in which both f and c are two random variables. The realization of f is the
training samples in the user class and the background class, while the realization
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of c is the class label ωuser or ωbg corresponding to the training samples.
Suppose Fk is the selected k-feature set {f1, ..., fk}5, then the mutual infor-

mation between Fk and c is

I(Fk; c) =
∫
· · ·

∫
p(f1, · · · , fk, c) log

p(f1, · · · , fk, c)
p(f1, · · · , fk)p(c)

df1 · · · dfkdc (3.19)

Given the criterion of optimization, a search algorithm is needed to find the
best subspace. The exhaustive search of all possible k-dimensional subspaces,
however, is computationally intractable. Firstly, the total number of candidate
subspaces, Ck

d, increases dramatically with the dimensionalities. Secondly, the
calculation of mutual information between each candidate subspace and the
class in (3.19) is also inhibitive, as the joint probability density functions in the
high-dimensional space have to be estimated.

Alternatively, simplified methods have been proposed in literature, like the
best individual features, incremental forward or backward search [121] [44] [72],
which are much faster to implement and yield nearly optimal results. The idea
underlying the simplified methods is to separately evaluate the mutual infor-
mation between the individual features and the class, so that joint probability
estimation can be avoided. A naive way, for example, is to find the k individual
features that have the k largest mutual information with the class labels I(fi; c),
i = 1, ..., k. The sum of mutual information between the individual features and
the class is therefore maximized

M =
1
k

k∑
i=1

I(fi; c) (3.20)

It has been well-known, however, that the combination of individually good
features does not necessarily guarantee good performance together [75] [28].
One main reason is that the selected features are very likely to have strong
dependencies, or redundancies, and thus other features that might otherwise
contribute more to the mutual information are neglected. In the face verification
case, a simple example can be given: when a feature in the feature vector (i.e., a
pixel in the face image) is chosen at the eye location as the one with the largest
mutual information with the class labels, the feature with the second largest
mutual information might well be a pixel nearby it. As a result, the second
feature adds little to the combined feature, possibly less than another pixel in

5For simplicity, we will denote {fidx1 , ..., fidxk
} with {f1, ..., fk} from now on.
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the nose region. Therefore, the dependencies between the selected features must
be taken into consideration. In [121], this dependency is expressed again in form
of mutual information as

R =
1
k2

k∑
i=1

k∑
j=1

I(fi; fj) (3.21)

Consequently, an incremental search algorithm is proposed in [121], which
optimizes the following criterion

ft+1 = arg max
f∈F−Ft

⎧⎨
⎩I(f ; c)− 1

t

∑
fi∈St

I(f ; fi)

⎫⎬
⎭ (3.22)

where ft is the tth feature selected, t = 0, ..., k − 1, Ft = {f1, ..., ft}. Each
time a new feature is selected which can maximize the mutual information with
the class, while minimize the mutual information with the previously selected
features. In [121], the authors have proved that for the first-order incremental
search, the criterion in (3.22) is equivalent to the maximization of the mutual
information in (3.19). Obviously, the large advantage of this incremental search
strategy is that the estimation of the multivariate densities p(f1, ..., fk) and
p(f1, ..., fk, c), which are needed to calculate the mutual information I(Fk; c) as
in (3.19), is avoided. Instead, the estimation of the bivariate densities p(fi, fj)
an p(fi, c) is much easier and more accurate.

We summarize the feature selection procedure as in Algorithm 3. Taking
advantage of the face symmetry, we can reduce the number of features to half
of the original d, i.e., the features that we concern only take up half of the face
region. Besides, we flipped the other half of the face and used it also as the
training data x. This means that we have less number of mutual information
to estimate, from d(d−1)

2 + d to
d
2 ( d

2−1)

2 + d
2 , and more favorably with training

set doubled to 2N .

3.4.3 Subspace Methods

So far we have discussed two direct dimensionality reduction methods that select
the features in an explicit manner, i.e., the selected features can be directly
mapped to the image pixels. The dimensionality can be further reduced in an
implicit manner by the subspace methods, which decompose the feature space,
and select the dimensions according to certain optimization criterion. Many
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Algorithm 3 The feature selection algorithm.
Require: Given the training samples {x1, ...,xN1} ∈ ωuser, and
{xN1+1, ...,xN} ∈ ωbg, N = N1 + N2, xi ∈ R

d.

Ensure: The reduced feature set with k features, Freduced ⊂ Ffull.

The d random variables r1, ..., rd are derived from the training samples, each
random variable representing a feature, with N realizations. See Fig. 3.8 for
an illustration. The full feature set is Ffull = {r1, ..., rd}.
The other random variable is the class c, obtained by:

c =
{

1 if xi ∈ ωuser

0 if xi ∈ ωbg

where i = 1, ..., N , referring to N realizations of c.

Select f1 = arg maxf∈F I(f ; c) as the first feature. Define the current feature
set Ft = {f1}.
for t = 1, ..., k − 1 do

Select ft+1 = arg maxf∈F−Ft

{
I(f ; c)− 1

t

∑
fi∈Ft

I(f ; fi)
}

;
Update the incremental feature set Ft = {f1, ..., ft}.

end for

The final reduced feature set is Freduced = {f1, ..., fk}.
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Figure 3.8: The relationship between the samples, the features, and the random
variables in feature selection.

well-known face recognition methods, like PCA [167], LDA [47], and ICA [4],
are examples of this category. Subspace analysis is inspired by the redundancy
of per-pixel representation of the face. Firstly, the appearance of faces is highly
constrained. For example, any face image is approximately symmetrical, with
eyes on the sides, nose in the middle, and mouth below, etc. Therefore, the
points that represent the faces only occupy a limited space in the entire image
space. Secondly, the value of a pixel is typically correlated with the value of the
surrounding pixels because they usually form a more or less consistent facial
pattern together.

The goal of the subspace methods is to find the intrinsic dimensionality
and the principal modes of subspaces. For example, Fig. 3.1, 3.2, 3.3 in Section
3.2.1, are all examples of the principal modes of the face subspace, derived under
different criterions. In our work, we have proposed four different dimensionality
reduction methods for likelihood ratio based face verification, namely, the per-
sonal subspace PCA, personal subspace LDA, and their kernel generalizations
[157] [158]. The term ”personal subspace” arises from the fact that we work
particularly on the verification problem, involving only a specific user. This is
in contrast to the standard identification problem in which the user-independent
transformations are designed from a larger population. The personal subspace
method adapts the parameters more specifically to a particular user, and is ex-
pected to have better performance than a general one. Even when there are
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multiple users, multiple personal subspaces are easily trained during the en-
rolment of each user, and a decision rule like OR can be applied for the final
verification.

We have already described PCA and LDA in Section 2.2.2, with emphasis
on the statement of problem and introduction of optimization criterion. In the
following, we will adapt them to our verification problem, and concentrate on
the mathematical solutions of the optimization problem.

Personal Subspace PCA

In this method, we derive two projection matrices with respect to the user class
and the background class, separately and independently.

Suppose we have the training samples in the user class s1, ..., sN , si ∈ R
d

where d is the dimensionality of si, the principal component analysis is con-
ducted on the set of samples. The mean and covariance of the user class are
obtained

s̄ =
M∑
i=1

si, Σuser =
1

N − 1
(si − s̄)(si − s̄)T (3.23)

As introduced in Section 2.2.2, PCA solves an eigenvalue problem

Σuseru = λu (3.24)

which can be solved by singular value decomposition (SVD) of Σuser

Σuser = UΛuserU
T (3.25)

where Λuser = diag(λ1, ..., λN ) is a diagonal matrix, and U = [u1, ..., uN ] is the
orthogonal matrix satisfying UTU = I. Each eigenvalue λi characterizes the
energy distributed along the eigenvector ui, i = 1, ..., N . The eigenvalues are in
decreasing order, λ1 > λ2 > ... > λN .

To reduce the dimensionality from the original d to k1, we choose the first k1

eigenvectors Puser = [u1, ..., uk1 ]
T as the projection matrix. Any input feature

vector x is reduced to a k1-dimensional vector y

y = Puserx (3.26)

The same PCA procedure is applied to the background space. Suppose we
have the training samples in the background class t1, ..., tN , ti ∈ R

d. The mean
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and covariance of the user class are calculated in the same way as (3.23). The
eigenvalue decomposition of the covariance Σbg yields

Σbg = V ΛbgV
T (3.27)

In the background space the first k2 eigenvectors are used as the projection
matrix. Any input feature vector x is then reduced to a k2-dimensional vector
y′ via the projection matrix Pbg = [v1, ..., vk2 ]

T

y′ = Pbgx (3.28)

The two PCA procedures works independently on two spaces and aim for
compact representation for the two different spaces. Obviously, the user space
is even more constrained than the background space. Therefore, the dimension-
ality of the user space k1 is usually chosen smaller than that of the background
space k2. The criterion to determine the reduced dimensionality can be the
energy preservation estimated by the sum of eigenvectors.

Now the probability density functions p(y|ωuser) and p(y′|ωbg) can be esti-
mated independently in the two reduced spaces with more ease. The likelihood
ratio of the originally input vector x is rewritten as

L(x) =
p(x|ωuser)
p(x|ωbg)

=
p(y|ωuser)
p(y′|ωbg)

(3.29)

Personal Subspace LDA

In this method, we derive one projection matrix with respect to the user class
and the background class simultaneously. Different from the personal subspace
PCA method in which two independent projection matrices Puser and Pbg are
obtained for the two classes respectively, in the personal subspace LDA method,
only one projection is derived for both classes.

The linear discriminant analysis aims to maximize the between-class scatter
Sb, while at the same time minimize the within-class scatter Sw [52]. In the
personal subspace LDA method, this is equivalent to the following criterion:
find the projection P which satisfies

P = arg max
P

|PTΣbgP |
|PTΣuserP | (3.30)

In the following, we will first give a simple proof of this equivalency, and
then provide easy solutions for this generalized eigenvalue problem.
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Proof. In the LDA method, given c classes ω1, ..., ωc, with Ni the number of
samples in class ωi, and N the total number N =

∑c
i=1 Ni. The within class

scatter matrix is defined as

Sw =
c∑

i=1

Si

where
Si =

∑
x∈ωi

(x− μi)(x− μi)T, μi =
1
Ni

∑
x∈ωi

x

The between-class scatter matrix is defined as

Sb =
c∑

i=1

Ni(μi − μ)(μi − μ)T

where

μ =
1
N

∑
x

x =
1
N

c∑
i=1

Niμi

Summing Sw and Sb, we have

Sw + Sb =
c∑

i=1

∑
x∈ωi

(x− μi)(x− μi)T +
c∑

i=1

∑
x∈ωi

(μi − μ)(μi − μ)T

=
c∑

i=1

∑
x∈ωi

(x− μ)(x− μ)T

=
∑

x

(x− μ)(x− μ)T

= ST

where ST is the total scatter matrix. Therefore, the LDA criterion can be
rewritten

P = arg max
P

|PTSbP |
|PTSwP |

= arg max
P

|PTSTP |
|PTSwP | (3.31)
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In the user verification case, by definition we have for the user class

Σuser = NuserSb

and for the background class

Σbg = NbgSbg = NbgST

For the second equality, note that in the verification case, the background class is
identical to the total class, as we assume that the full set includes infinitely many
classes, and exclusion of a single class virtually does not alter its distribution
(Section 3.3.1).

Referring to (3.31), the criterion of the finding the projection in personal
space LDA is

P = arg max
P

|PTSTP |
|PTSwP |

= arg max
P

|PTΣbgP |
|PTΣuserP |

To solve the generalized eigenvalue problem in (3.30), we derive the projec-
tion matrix P in two steps: P = P2P1, in which P1 and P2 are two orthogonal
matrices, satisfying PT

1 P1 = I, PT
2 P2 = I. P1 and P2 diagonalize the covariance

matrices Σuser and Σbg simultaneously.
In the first step, P1 whitens the Σuser in the denominator. Eigenvalue de-

composition of Σuser yields

Σuser = UΛuserU
T

where Λuser is a diagonal matrix, whose inverse can be easily calculated. The
whitening matrix P1 is

P1 = Λ−
1
2

userU
T (3.32)

which satisfies P1ΣuserP
T
1 = I. The purpose of whitening is that the optimiza-

tion problem can be now simplified. Suppose after applying the first projection,
the whitened covariance matrices are Σ′user and Σ′bg
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Σ′user = P1ΣuserP
T
1 = I, Σ′bg = P1ΣbgP

T
1

The optimization problem (3.30) is now reduced to

P = P2P1

P2 = arg max
P2

|PT
2 Σ′bgP2|

|PT
2 Σ′userP2|

= arg max
P2

|PT
2 Σ′bgP2|
|PT

2 IP2|

= arg max
P2

|PT
2 Σ′bgP2|
|I|

= arg max
P2
|PT

2 Σ′bgP2|

which can be simply solved by a SVD of Σ′bg

Σ′bg = V ΛbgV
T

Suppose the dimensionality is reduced from d to k, then the optimized projection
matrix P2 is constituted of the eigenvectors corresponding to the first k largest
eigenvalues

P2 = [v1, ..., vk]T = V T
k (3.33)

where vi is the ith column of V . Finally, we have projection matrix P for
dimensionality reduction, which satisfies (3.30)

P = P2P1 = V T
k Λ−

1
2

userU
T (3.34)

Another way of solving (3.30) is to solve an equivalent problem

P = arg min
P

|PTΣuserP |
|PTΣbgP |

in a similar way, by first whitening the background covariance matrix Σbg,
and then calculating the eigenvectors of the whitened covariance matrix Σ′user

corresponding to the k smallest eigenvalues. Same solutions will be obtained.
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Any input feature vector x is then reduced to a k-dimensional vector y via
the projection matrix P

y = Px (3.35)

The likelihood ratio of the originally input vector x is rewritten as

L(x) =
p(x|ωuser)
p(x|ωbg)

=
p(y|ωuser)
p(y|ωbg)

(3.36)

in which p(y|ωuser) and p(y|ωbg) are more easily estimated in a dimensionality-
reduced feature space.

Personal Subspace KPCA

Kernel Principal Component Analysis (KPCA) [144] is a nonlinear generaliza-
tion of the original PCA method. By introducing the same ”kernel trick” as in
support vector machines [175] [16] [30], the feature vectors are projected onto
a higher dimensional nonlinear space. The basic idea of KPCA is illustrated in
Fig. 3.9.

The kernel function is an inner product function. In the linear space, the
kernel function is a simple dot product function

k(x1, x2) = (x1 · x2) = xT
1 x2 (3.37)

where x1 and x2 are two feature vectors in the linear space.
Suppose the feature vectors are projected to a nonlinear space by a nonlinear

function x′1 = Φ(x1), x′2 = Φ(x2), then the inner product in the nonlinear space
is

k(x1, x2) = (Φ(x1) · Φ(x2)) (3.38)

which is function with vector input and scalar output.
k(x1, x2) can be any function that satisfies Mercer’s theorem [175]: if K is

the continuous kernel of an integral operator that is positive definite, we can
construct a mapping into a space where K acts as a dot product. Common
kernels includes polynomial kernel k(x1, x2) = (x1 · x2)d and Gaussian radius
function kernel k(x1, x2) = exp(−‖x1−x2‖2

2σ2 ) [30]. Consequently, if any algorithm
can be written in the form of the dot product between the feature vectors, the
kernel function K(xi, xj) can be plugged in to substitute the dot product (xi·xj),
and thus the nonlinear projection of feature vectors is implicitly done.
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Figure 3.9: The basic idea of KPCA (from [144]): for a complex manifold as in
bottom left, we can project it into a higher dimensional space, and the principal
manifold is solved by performing linear PCA in this space, as in bottom right.
Projecting back to the original space, the principal manifold is nonlinear.
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Firstly we have to transform the PCA algorithm in such a form that the
relationship between the feature vectors is expressed by dot product. For sim-
plicity, we assume all the feature vectors xi, i = 1, ..., N , are mean-removed6.
The PCA problem in (3.24) can be rewritten(

1
N

N∑
i=1

xix
T
i

)
u = λu

Thus,

u =
1

Nλ

N∑
i=1

xix
T
i u

=
1

Nλ

N∑
i=1

(xi · u)xi (3.39)

which implies the eigenvector u is in the span of x1, ..., xN .
Define a new coefficient vector α = [t1, ..., tN ]T, in which ti = (xi · u).

Represent the samples in a matrix X = [x1, ..., xN ] ∈ R
d×N with each column

a sample feature vector, where d is the original dimensionality of the feature
vectors, then α is

α = XTu (3.40)

Rewrite (3.39) in matrix form

u =
1

Nλ
Xα (3.41)

Substitute (3.41) into (3.40), we have

6For mean-centered samples, the computation of the kernel matrix K as in (3.44) becomes
more complicated

k̃(xi, xj) = k(xi, xj)− 1

N

N∑
p=1

k(xi, xp)− 1

N

N∑
q=1

k(xq , xj) +
1

N2

N∑
p=1

N∑
q=1

k(xp, xq)

or, equivalently,
K̃ = K − 1NK −K1N + 1NK1N

where (1N )ij = 1
N

, for i = 1, ..., N , j = 1, ..., N . See [144] Appendix A.
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α =
1

Nλ
XTXα (3.42)

Further transformation yields

λα =
XTX

N
α (3.43)

This is an eigenvalue problem, in which α the eigenvector of XTX
N , and λ the

corresponding eigenvalue. XTX can be calculated through dot product between
the feature vectors

XTX =

⎛
⎜⎜⎜⎝

(x1 · x1) (x1 · x2) . . . (x1 · xN )
(x2 · x1) (x2 · x2) . . . (x2 · xN )

...
...

...
(xN · x1) (xN · x2) . . . (xN · xN )

⎞
⎟⎟⎟⎠

which can be calculated by kernel function only. In the projected nonlinear
space, (xi · xj) is simply substituted by k(xi, xj). Define

K =
XTX

N
=

1
N

⎛
⎜⎜⎜⎝

k(x1, x1) k(x1, x2) . . . k(x1, xN )
k(x2, x1) k(x2, x2) . . . k(x2, xN )

...
...

...
k(xN , x1) k(xN , x2) . . . k(xN , xN )

⎞
⎟⎟⎟⎠ (3.44)

The coefficient vector αi and the associated λi is obtained by taking the
eigenvector and eigenvalue of K, i = 1, ...,m, where m is the reduced dimen-
sionality. Referring to (3.41) which represents one vector, the projection matrix
U is

U = X

(
α1

Nλ1

α2

Nλ2
. . .

αm

Nλm

)
= XA (3.45)

in which A =
(

α1
Nλ1

α2
Nλ2

. . . αm

Nλm

)
∈ R

N×m, U ∈ R
d×m. To project the

original input feature vector x onto the principal manifolds, we have
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y = UTx = ATXTx = AT

⎛
⎜⎜⎜⎝

(x1 · x)
(x2 · x)

...
(xN · x)

⎞
⎟⎟⎟⎠ = AT

⎛
⎜⎜⎜⎝

k(x1, x)
k(x2, x)

...
k(xN , x)

⎞
⎟⎟⎟⎠ (3.46)

where y ∈ R
m is the projected result. In this projection, the calculation only in-

volves the dot products between the input feature vector x and the training fea-
ture vectors xi, i = 1, ..., N . By far we have obtained the desired dimensionality-
reduced feature vector y.

The personal space KPCA method carries out the above nonlinear dimen-
sionality reduction procedure in both the user and the background space. The
final likelihood ratio of the reduced feature vectors is calculated in the same way
as in (3.29).

Personal Subspace KLDA

Given the mathematical derivations in personal subspace KPCA and personal
subspace LDA, we can generalize the personal subspace LDA to its kernel ver-
sion. The feasibility lies in the way we solve LDA, as in (3.32), (3.33), and
(3.34): the final LDA projection matrix P is divided into two PCA-like proce-
dures, which can be generalized by using the KPCA strategies.

In (3.32), The first whitening matrix P1 is

P1 = Λ−
1
2

userU
T

Referring to (3.45), we have

P1 = Λ−
1
2

userA
TXT

user (3.47)

where A =
(

α1
N1λ1

α2
N1λ2

. . .
αN1

N1λN1

)
∈ R

N1×N1 , P1 ∈ R
N1×d. The pairs

{αi, λi}, i = 1, ..., N1, are the eigenvector and eigenvalues of the kernel matrix
Kuser, defined in the same way as in (3.44).

Given P1, the whitened background samples are calculated as in (3.46). Let
Xbg be the sample matrix of the background class, then the whitened samples
and their kernel matrix are
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X ′
bg = P1Xbg, K ′

bg =
(X ′

bg)
TX ′

bg

N2

In (3.33), the second projection matrix P2 is

P2 = V T
k

Referring to (3.45), we have

P2 = BT
m(X ′

bg)
T (3.48)

where Bm =
(

α1
N2λ1

α2
N2λ2

. . . αm

N2λm

)
∈ R

N2×m, P2 ∈ R
m×N1 . The pairs

{αi, λi}, i = 1, ...,m, are the eigenvector and eigenvalues of the kernel matrix
K ′

bg. The final KLDA projection matrix is

P = P2P1 = BT
m(X ′

bg)
TΛ−

1
2

userA
TXT

user (3.49)

The projection matrix P ∈ R
m×d, and the projection can be calculated via

kernel functions between the training user sample data x1, ..., xN1 with any
input sample x

y = Px = BT
m(X ′

bg)
TΛ−

1
2

userA
T

⎛
⎜⎜⎜⎝

k(x1, x)
k(x2, x)

...
k(xN1 , x)

⎞
⎟⎟⎟⎠ (3.50)

Finally, the likelihood ratio of the dimensionality reduced feature vectors y can
be then calculated as in (3.36).

Theoretically, we have had the complete solution to the KLDA problem, but
the computation involved can be very expensive, especially when the number
of training samples is large. In such cases, the kernel matrix K is also large,
which makes itself slow to calculate, and renders the eigenvalue decomposition
of it very slow, too. Meanwhile, the projection in (3.50) requires calculating
the kernel function between the input x and all the training samples, and this
is again very expensive. A close look at the projection functions for KPCA
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Figure 3.10: Illustration of the performance measures: (a) ROC, (b) DET, (c)
EER, (d) AUC.

(3.46) and KLDA (3.50) reveals that the form is alike to that of the neural
network [12], in the sense that the output (each element of y) is a weighted sum
of the kernel functions between the training samples and the input pattern.
The weights, however, are directly derived in KPCA or KLDA in closed form,
instead of iteratively determined as in neural network.
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3.5 Experiments and Results

3.5.1 Performance Measures

The verification is basically comes down to thresholding the calculated likeli-
hood ratio. The acceptance region Ra and the rejection region Rr at a certain
threshold t are defined as

Ra(t) = {x|L(x) ≥ t} (3.51)

Rr(t) = {x|L(x) < t} (3.52)

where L(·) is the calculated likelihood ratio.
To measure the performance, there are two important quantities: the FAR,

denoted by α, and the FRR, denoted by β. Although mentioned many times
before, here strict mathematic definitions are given

α(t) = P (x ∈ Ra(t)|x /∈ ω) =
∫

Ra(t)

p(x|ω̄)dx (3.53)

β(t) = P (x ∈ Rr(t)|x ∈ ω) =
∫

Rr(t)

p(x|ω)dx (3.54)

The dependency of the above quantities on the threshold t leads to two equiv-
alent performance measures that are widely used. When t varies, the FAR can
be seen as a function of the FRR, β(α), known as the detection error trade-off
characteristic (DET) [103]. Another popular measure is the receiver operating
characteristic (ROC), in which the detection rate is expressed as a function of
FAR, pd(α) [49]. Both DET and ROC are monotonic curves, illustrating the
overall performance across the whole range of thresholds. Sometimes the equal
error rate (EER) and the area under curve (AUC) are used as reduced mea-
sures of performance. Fig. 6.1 illustrates the performance measures that were
discussed above.

3.5.2 Data Collection

To learn the probability density functions of the user class p(x|ωuser) and the
background class p(x|ωbg), a large number of samples are required. This is
especially true in case of estimating the GMM models. For accurate and robust
estimation, we expect that the number of samples is high compared to the
dimensionality of feature vectors, and the number of unknown parameters is
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(a) BioID (b) FERET

(c) Yale B (d) FRGC

Figure 3.11: Examples of the background faces from BioID, FERET, Yale B,
and FRGC, detected and registrated using the methods in Chapter 2.

low. Otherwise overtraining is likely to occur and leads to poor generalization
ability of the verification system.

The Background Class

The background sample set can be taken from the public face databases. In the
experiments we adopt four databases, namely the BioID database [171], FERET
database [172], Yale B database [56], and FRGC database [173]. The faces are
detected and registrated using the methods proposed in Chapter 2. Fig. 3.11
gives some examples of the faces in the databases. The databases in total result
in more than 10,000 samples for training in the background class.
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The User Class

The user sample set are obtained by taking face images from the MPD. We used
the Eten M600 PDA as the mobile device. Practically the user set is easy to
collect: at a frame rate of 15 fps, one-minute video ends up with 900 frames of
face images. In total the data of 20 users has been collected from volunteers,
with 4 independent sessions for each subject, taken at different time and under
different illuminations. Fig. 3.12 gives four examples of the collected user faces,
each example are shown in two sessions. Besides, the training set is extended
by creating slightly shifted, rotated, and scaled versions of the face image. This
step increases the within-class variation only slightly, as the previous step, face
registration, also causes some variations on this level.

Test Protocol

In the following, we will carry out a series of experiments. To evaluate the
verification performances using different methods and parameters, it is necessary
to first specify the test protocol.

For one specific user, we learn the density of the user class from the user
data of one session, and compute the testing genuine scores, i.e., the likelihood
ratios, from the user data of the other three independent sessions. To remove
the cross-session variations, we used simple preprocessing methods, like the
zero-mean and unit-variance normalization and the histogram equalization on
the images. The main purpose of the experiments is to find effective and simple
ways of calculating the likelihood ratio, while more complicated illumination
normalization problem will be introduced in the next chapter.

The density of the background class is learned from the public database,
and the impostor scores are computed from our collected data of the other
19 subjects. Note that the training and testing data of the background class
are different in the setting. Using the public databases as the training data is
convenient for the MPD implementation, as the background parameters need to
be trained only once, and stored for all the users. On the other hand, obtaining
the impostor scores from our own database is of more interest than obtaining
them from the public database, because the face images in our own database
are collected under more or less the same situation, and thus more meaningful
and critical for testing the verification performance.

Given the genuine and the impostor scores, the ROC can be obtained from
them to show the performance of the system. The EER can be derived from
the ROC as a performance measure.
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(a) User 1, two sessions

(a) User 2, two sessions

(a) User 3, two sessions

(a) User 4, two sessions

Figure 3.12: Examples of user faces in two independent sessions, detected and
registrated using the methods in Chapter 2.
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Figure 3.13: (a) The originally registered face square, (b) the ROI taken.

3.5.3 Experimental Results

We present the experimental results of face verification using the likelihood ratio
classifier. To calculate the likelihood ratio, the probability densities of the user
class ωuser and the background class ωbg have to be estimated. Prior to the
density estimation, a dimensionality reduction procedure can be applied to the
feature vectors. To find the best and easiest way of obtaining the likelihood
ratio, we carried out experiments with different set-up:

• For dimensionality reduction:

– Rescaling the image, as introduced in Section 3.4.1;

– Feature selection, as introduced in Section 3.4.2.

– Personal subspace PCA, LDA, KPCA, and KLDA, as introduced in
Section 3.4.3;

• For density estimation:

– Single Gaussian model, as introduced in Section 3.3.2;

– Gaussian mixture model, as introduced in Section 3.3.3.

Scale and ROI

We first investigate the influence of the region of interest (ROI) and the face
scale on the verification performances. To evaluate this parameter, for sim-
plicity, we used the single Gaussian model, and used the feature vector of the
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(a) L = 12, d from 144 to 48;
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(b) L = 24, d from 576 to 192;
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(c) L = 36, d from 1,296 to 432;

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

False accept rate α (%)

D
et

ec
tio

n 
ra

te
 p

d(%
)

before applying ROI
after applying ROI

(d) L = 48, d from 2,304 to 768.

Figure 3.14: Comparison of the verification performance before and after ap-
plying the ROI. Four different scales are tested, d is the dimensionality of the
feature vector.
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Figure 3.15: Comparison of the ROCs, using face image of different scales. Two
preprocessing methods are used: (a)zero-mean and unit-variance normalization,
(b) histogram equalization.

full dimensionality. The simple zero-mean and unit-variance normalization is
applied on the cross-session images as a preprocessing.

The selected ROI should contain the major and consistent facial features in
the face. Under such criterion, the selected ROI includes the eyebrows, eyes,
nose, but excludes the forehead, mouth, and temple, as shown in Fig. 3.13. The
face region within this ROI are less influenced by the expressions of the user,
as mouth is most sensitive to the expressions. Moreover, the ROI selection as
indicated in Fig. 3.13 reduces the length of the feature vectors by 2

3 . This makes
the training much easier. In this way, the ROI largely reduces the dimensionality
of the feature vector, and at the same time throws away the uninformative and
noisy components of the face image. The specified ROI in Fig. 3.13 is empirically
chosen.

To validate the ROI selection, we also show the performance comparison
of the face verification before and after the ROI selection. We tested 4 scales:
12, 24, 36, 48, of the originally registered face image. Fig. 3.14 shows the
verification performance before and after applying the ROI on the originally
registered image square. Obvious improvement can be observed in all the four
cases. Moreover, the improvement increases with the increase of the dimension-
ality. This indicates that a selection of the ROI is necessary and beneficial for
the face verification.
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To investigate the impact of the image sizes on the verification performance,
we further calculated the ROCs of 5 different scales, 12× 12, 24× 24, 36× 36,
48 × 48, and 60 × 60. Note these are the original face sizes, and the image
in the ROI is taken as the feature vector. For this purpose, we applied two
preprocessing methods to remove the cross-session variations. Similar trend of
the scale influence on the verification performance can be observed from Fig.
3.15 (a), in which zero-mean and unit-variance normalization is applied, and
from Fig. 3.15 (b), in which histogram equalization is applied. In both cases,
with the increase of the scale from 12 to 60, the performance firstly improves
and then drops. This can be explained by the fact that images on a scale that
is too small do not contain enough discriminative information for verification,
while images on a scale that is too large put forwards high requirements on the
training, which is difficult to be satisfied. In both image, it is suggested that
the scale in the range of 24 and 36 should be a good choice. This coincides with
the observation in [14] which suggests an optimal scale of 32. It can be further
observed that the cross session tests do not have satisfactory performance in
general, with the EER higher than 5%, even in good cases. In Fig. 3.15 (a),
the zero-mean and unit-variance normalization yields better performance than
the histogram equalization method in Fig. 3.15 (b), but still not good enough.
This implies that the cross-session variation, which is primarily caused by the
illumination differences, has a large influence on the verification performances.

Feature Selection

The dimensionality can be further reduced by feature selection, i.e., select an-
other discrete ROI by the information theoretic criterion, i.e., mutual informa-
tion, as introduced in Section 3.4.2. The feature selection is within the ROI
defined in Fig. 3.13. The feature selection method is applied for each user, and
results in user-specific feature selections. Fig. 3.16 shows the selected first 100
feature locations for the four different users, projected on the user average face
image, forming a mask-like covering.

It can be observed that for different users, the selected feature locations
are different. This is explained by the fact that different users have different
face textures, which means that the distributions of the pixel values, if seen as
random variables, in the face are user-specific. For example, for the user 2 and
3, in Fig. 3.16 (b) and (c), the important features are distributed around the
eye region, while for the user 1 and 4, in Fig. 3.16 (a) and (d), the important
features are more uniformly distributed in the ROI.

Unlike many other optimization methods that use the criterion of classifica-
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(a) User 1 (b) User 2

(c) User 3 (d) User 4

Figure 3.16: The first 100 selected feature locations, projected on the user
average face image. The face size is 36× 36.
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Figure 3.17: Comparison of the ROCs before and after the feature selection: (a)
within-session test, (b) cross-session test.
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tion performance or errors, the criterion of our feature selection is the mutual
information, so it is interesting to check whether the performance is indeed
improved after feature selection. Fig. 3.17 shows the verification performance
before and after applying the feature selection. We used the zero-mean and unit-
variance normalization for the preprocessing. Fig. 3.17 (a) shows the ROCs in
the within-session test, and Fig. 3.17 (b) shows the ROCs in the cross-session
test. In the within-session test, the performance is improved after feature se-
lection, however in the cross-session test, the performance is degraded to some
extent. This can be explained by the overtraining effect of the feature selec-
tion, which means that the selected features are not only user-specific, but also
session-specific. In other words, the difference of the cross-session data is such
that it changes the distributions of the random variables, and makes the fea-
ture selection based on the distribution information overfitted to the data of the
training session. Besides, the feature selection procedure is dependent on the
distribution estimation, which is by itself sensitive to the training.

Subspace Method

We also evaluated the personal subspace methods for dimensionality reduction
as discussed in Section 3.4.3. To find the best dimensionality, we firstly applied
the PCA and LDA in its linear version, i.e. without applying a non-linear kernel.
To give a comprehensive view of the influence of the dimensionality on the
verification performances, we calculate the error map with respect to different
combination of dimensionalities. The performance measure we used here is
the EER. In Fig. 3.18 (a) we show the error map of the personal subspace
PCA, in which different dimensionalities are applied on the user space and
the background space separately and independently. To obtain this map with
respect to varying dimensionalities, we used a dimensionality step of 18. From
dimensionality of 18 to 432, we calculated the EER of 24×24 = 576 combinations
of different user space and background space dimensionalities. It can be observed
that in a large range of dimensionality combinations, the verification has a
performance on more or less constant level. The best performance, however,
can be found when the user space is represented in a more compact way than
the background space, e.g., the dimensionality of the user space is 200, and the
dimensionality of the background space is 400.

In Fig. 3.18 (b) we show the error map of the personal subspace LDA, in
which different dimensionalities are applied for the two diagonalizaion steps, as
called PCA dimensionality, dPCA, and LDA dimensionality, dLDA, dLDA ≤ dPCA,
in the map. Note the LDA dimensionality is always smaller than the PCA
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Figure 3.18: (a) The error map with respect to different user space dimension-
ality and background space dimensionality. (b)The error map with respect to
different PCA and LDA dimensions.

dimensionality, therefore only the upper right triangle of the map contains valid
information, with in total 300 different combinations of the two dimensionalities.
At each dPCA, it is observed that the verification performance improves with
the increase of dLDA. As the error map is with respect to the cross-session test,
this implies that the LDA dimensionality reduction based on simultaneously
manipulating the user training data and the background data is sensitive to the
training session. Furthermore, the verification performance globally improves
with the increase of dPCA, which implies that the higher dimensionalities are
beneficial for representation of the two classes.

We have also implemented the personal subspace PCA and LDA in their
kernel version. Unfortunately, the nonlinear subspace methods cannot improve
the verification performance further under our test protocol. A benefit of non-
linear subspace analysis, nevertheless, is that with relatively a small number of
samples, e.g. 100 user training samples and 1,000 background training samples,
it can achieve better performance than the linear subspace analysis at the same
situation. However, the performance still cannot compare to that of the linear
subspace methods using sufficient samples as discussed above. Besides, with
the increase of the training samples, the calculation becomes unaffordable, as
every sample implies one time calculation of the kernel function between the
input vector and itself. For example, to learn a good background class, we have
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Figure 3.19: The ROC curves of the single Gaussian model and the Gaussian
mixture model for calculating the LLR.

used the public database with more than 10,000 samples, and this will make the
implementation of the kernel methods on the MPD impossible.

Probability Density Estimation

We also evaluated two probability density models: the single Gaussian model
and the Gaussian mixture model, as introduced in Section 3.3.2 and Section
3.3.3. We used the Gaussian mixture algorithm in [51]. The Gaussian mixture
model gives a more detailed description of the probability density, and is able
to achieve lower classification error in the within-session test. However, the
cross-session tests are of more interest in our application, as the enrollment
phase and the testing phase are clearly separated in reality. Fig. 3.19 shows the
ROC of the cross-session test, as described in the test protocol in Section 3.5.2.
For this calculation we used the zero-mean and unit-variance normalization
method, and the full dimensionality of the feature vector. A sharp decrease of
the performance can be observed in the cross-session test.

So far it has been noticed that due to the large variability of the cross-session
data, we must be very cautious with the dimensionality reduction, as well as
with the density estimation. If the model in either step is too complicated,
overtraining effects will occur. Normalization of the cross-session variability,
which is largely caused by illumination, will help to reduce the speciality of the
training data. Nevertheless, it is still safer to use a simpler model in order to
increase the generalization capability of the system, as long as the discrimination
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capability of the system is sufficient. For this concern, as well as for the concern
of computational complexity, we will use the single Gaussian model for the
density estimation. The discrimination capability of the face verification system
will be discussed in the next chapter.

3.6 Summary

This chapter discusses the face verification problem. Although similar to the face
detection problem in the sense that both are two-class classification problems,
the verification is more difficult a problem to solve, as it has larger intra-class
variation and less inter-class variation. In the detection problem, the face class
and the non-face class are two classes distributed with considerable margins,
i.e., more separate, therefore, a detector with good performance is theoretically
achievable. The emphasis of detection, instead, is to a large extent on the effi-
ciency and the speed of the detection algorithm, for detection means enormous
candidates to be classified. In the verification problem, in contrast, the user face
class and the non-user class are much closer in distribution. A margin based
classifier that works well enough for the detection, like the SVM which relies
explicitly on the support vectors, or the Viola-Jones Adaboost method which
relies implicitly on the highly-weighted samples, is not adequate for verification.
Instead, the two classes are more accurately modeled as two overlapping classes
with one encompassing the other, as shown in Fig. 3.5. To achieve the theo-
retically best performance, we used the likelihood ratio, an optimal measure in
the Neyman-Pearson sense, as the verification rule.

Dimensionality reduction is an important step before estimating the like-
lihood ratio. It largely reduces the risk of curse of dimensionality. We have
studied various methods for dimensionality reduction, including rescaling of the
image, taking the ROI, feature selection based on information theoretic mea-
sure, and linear and nonlinear subspace methods. With our experiments on
the cross-session MPD data, we have observed that the scale and ROI of the
face image have large influence on the verification performances, while feature
selection and subspace methods are less influential, sometimes even leading to
overtraining of the system, i.e., the feature reduction trained on one session data
does not work well enough for the data of another independent session.

Another relevant problem of the likelihood ratio based verification is the es-
timation method of the likelihood ratios. We have evaluated the single Gaussian
model and Gaussian mixture model for both of the two classes. We showed that
the single Gaussian model is not only much faster, but also more robust and re-
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liable than the Gaussian mixture models. With this model, the likelihood ratio
can be simply reduced to the difference between the Mahalanobis distances in
the two classes.

In contrast to many other face applications which involves multiple users and
have more or less even distribution of classes, one characteristic of the verifica-
tion problem is that the two classes are largely unbalanced: a small user-specific
class against a large background class. This brings high requirements on the
generalization between the face data collected under different situations. This
characteristic will be revisited in the following chapters, and guide our study
on the illumination normalization problem in Chapter 5, and the information
fusion problem in Chapter 6.
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Chapter 4

Illumination Normalization

4.1 Introduction

1The variability on the face images brought by illumination changes is one of the
biggest obstacles for reliable and robust face verification. It has been suggested
that the variability caused by illumination changes easily exceeds the variability
caused by identity changes [111]. As an example, Fig. 4.1 shows two face images
of the same subject under two distinct illuminations. This observation has been
widely acknowledged in the face recognition society. Basically, illumination
easily alters the the distributions and amplitudes of the pixel values on a face
image, which in turn changes the extracted feature vectors. Consequently, the
face classifiers working on feature vectors are highly sensitive to the illumination.
Illumination normalization, therefore, is a very important component of a face
recognition system.

An illumination invariant representation of the face is most desirable for any
face interpretation task. However, such a representation is difficult to achieve.
There has been intensive study on this topic in literature, which can be cat-
egorized into two groups. The first category of methods try to study the il-
lumination problem in a fundamental way, by building up the physics imaging
model and the three-dimensional face surface model. This category we call three-
dimensional methods. The second category of methods, however, do not rely on
recovering the full three-dimensional information, instead, they work directly on
the two-dimensional image pixel values. This category we call two-dimensional

1This Chapter is based on the publication [159], [164].
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Figure 4.1: Face images of the same subject under two distinct illuminations.
Examples are taken from the Yale B database [56].

methods. In this chapter, we will firstly present a review of two categories of
methods, analyze their advantages and disadvantages, and propose the solutions
that are most suitable for our specific face verification problem on a mobile per-
sonal device.

The remainder of this chapter is organized as follows. Section 4.2 reviews
the illumination normalization methods in the two aforementioned categories.
Section 4.3 and Section 4.4 proposes two solutions to our specific problem on
the MPD, namely, directional sensitive horizontal Gaussian derivative filters and
directional insensitive local binary patterns. Section 4.5 examines our proposed
solutions under the verification framework introduced in Chapter 3. Section 4.6
presents the experimental results of the proposed illumination normalization
methods. Section 4.7 summarizes this chapter.

4.2 Review of the Illumination Normalization
Methods

4.2.1 Three-Dimensional Methods

Illumination on faces is essentially a three-dimensional problem. Three-dimensional
illumination normalization methods aim to solve the problem on the two-dimensional
images from the three-dimensional point of view. Most of these methods share
the same basic physical model, as in [146], [147] [8], [193], [5], [149] etc, assuming
Lambertian reflectance on the object surface. In general, inhomogeneous sur-
faces are dominantly Lambertian, except for isolated regions that are specularly
reflecting light [146]. The Lambertian reflectance model is expressed as

I(x, y) = ρ(x, y) nT(x, y) s, (4.1)
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Figure 4.2: The Lambertian reflectance model, where ρ(x, y) is the albedo at
the point (x, y), n(x, y) is the surface normal, and s is the light source.

In case of shadow caused by angles larger than 90◦,

I(x, y) = max
{
ρ(x, y) nT(x, y) s, 0

}
. (4.2)

In both equations, (x, y) are the coordinates of the image point, I(x, y) is
the corresponding image pixel value, ρ(x, y) ∈ R is the albedo at this point,
n(x, y) ∈ R

3×1 is the surface normal, and s ∈ R
3×1 is the light source, contain-

ing both the direction and intensity information. Fig. 4.2 gives an illustration
of this reflectance model. By approaching the problem in the three-dimensional
domain, it is assumed that the effects of s can be decoupled in either an explicit
or inexplicit manner.

Linear Subspace

In the early work of Shashua [146], it was proposed that the images of a station-
ary object lie in a three-dimensional Euclidean space, and can be represented as
linear combinations of a set of 3 images of the object. A simple proof is given
as follows.

Proof. Let m(x, y) = ρ(x, y)nT ∈ R
1×3. For simplicity, we will omit the coordi-

nate (x, y) in the following proof. The image I obtained under some illumination
s is, according to (4.1)

I = ms

Any 3-dimensional light vector s can be decomposed into 3 linear inde-
pendent basis, satisfying the condition that the rank of matrix (s1 s2 s3) is 3,
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Figure 4.3: The 3 basis images of an object, taken under 3 different illumina-
tions, from [146].

expressed as
s = α1s1 + α2s2 + α3s3

Therefore,

I = m(α1s1 + α2s2 + α3s3)
= α1(ms1) + α2(ms2) + α3(ms3)
= α1I1 + α2I2 + α3I3

which means that images taken under an arbitrary illumination can be decom-
posed to the weighted sum of the other 3 basis images, taken under 3 basis
illuminations.

Given three basis images of the subject taken under three linearly indepen-
dent illuminations, see Fig. 4.3 for an example, the coefficients α1, α2, and α3

can be solved for any input image I by formulating a least square problem

α = arg min
α
|Sα− I|2

where α = [α1 α2 α3]T, S = [s1 s2 s3]. Consequently, a distance from the input
image to the spanned space by the basis images can be calculated, and used for
classification of the input image, in the same way as the ”faceness” measure in
[167].

Illumination Cone

Illumination cone is an extension of the linear subspace of the Lambertian ob-
jects [8]. It is shown that the set of images of an object seen under arbitrary
lighting conditions is a convex cone that lies in a low-dimensional subspace of
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Figure 4.4: Left: the original images used to construct the illumination subspace
of the subject. Right: the three basis images that span the illumination subspace
of the subject [8].

the image space. Using the Lambertian model in (4.2), the set of all possible
images of a subject, created by varying the light sources, is constructed

I =

{
I : I =

k∑
i=1

max(Msi, 0)

}

where M ∈ R
N×3 is a matrix containing both the surface normal and albedo

information of all the pixels in the face image (N is the number of pixels in
image). When Msi < 0, the value 0 is taken as the shadow area.

For the face recognition purpose, an illumination cone is built for each sub-
ject. The illumination cone is derived using a photometric stereo algorithm.
The intrinsic information of the subject’s three-dimensional mode, M , is esti-
mated by recursively minimizing |I −M∗S|, where I is a matrix representing
the training images, and S is the matrix representing different lighting condi-
tions. Given M , a dimensionality reduction through SVD is performed so as to
represent the illumination cone in a more compact way.

The central argument of [8] is that the set of images of an object under all
possible illumination conditions formed a convex cone in the image space, and
that this illumination cone can be constructed from as few as 3 images, see Fig.
4.4 for an example. The distance between the input image and the same image
represented by the illumination cone is calculated for the final classification.
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Figure 4.5: The calculated first 9 harmonic images for a subject, from [5].

Spherical Harmonics

The spherical harmonics method introduces a sphere with unit albedo for mod-
eling the reflectance functions [5]. It is proved that the set of all reflectance
functions, i.e., the mapping from surface normals to intensities, produced by
Lambertian objects lies close to a 9-dimensional linear subspace. This implies
that the set of images of a Lambertian object obtained under a wide range of
lighting conditions can be approximated by a low-dimensional subspace.

In this work, the authors modeled the reflectance function of a sphere with
unit albedo under isotropic lighting conditions using spherical harmonics repre-
sentations. It is observed that 99% of the reflectance function energy resides in
the first few harmonics. The motivation to model the reflectance function of a
sphere is, each point on the face object can inherit its intensity from the point
on the sphere which share the same normal n. Given the reflectance function
r(x, y, z), the image pixel at location p, corresponding to the point on the face
object with the albedo ρ and surface normal n = [nx, ny, nz]T, has the value

I(p) = ρ r(nx, ny, nz)

Using the first 9 spherical harmonics as the base for the reflectance function
r(x, y, z), the set of images of an object can be approximated by a linear sub-
space, using the harmonics images, which are images obtained using the basis
of the reflectance functions, as shown by Fig. 4.5. Face recognition is done in
the same way as the previous method, by calculating the distances between the
input image and the same image reconstructed in the harmonics subspace.

Quotient Image

In [147], Shashua et al. proposed a quotient image method to deal with the
illuminations problem. The authors show that the set of all images, generated

106



quotient
image

original
image

rerendered images under 
different illuminations

Figure 4.6: Examples of the quotient images, from [147]. The first column is the
original face image, the second row is the illumination-invariant quotient image,
and the last 3 rows are the rerendered image under different illuminations via
the quotient image.

by varying the lighting conditions on a collection of Lambertian objects in a
class, defined as the objects of similar shape (e.g. human faces are taken as
a class), can be characterized analytically using images of a prototype object
in this class, and an illumination-invariant quotient image of the object in this
class. The obtained quotient image, or the image rerendered under the uniform
frontal illumination, can be used as the illumination-normalized output for the
subsequent face recognition.

It is important to note that the authors defined the class as the collection of
subjects, which share the same three-dimensional shape, i.e., the surface normals
n in (4.2), but differ in the surface albedos ρ. The quotient image is defined as

Qx(p) =
ρx(p)
ρa(p)

where Qx is the quotient image of subject x, p is the range of the image, ρx

is the albedos of the subject x, and ρa is the albedos of the training subject a
in the same class. Under the constant shape assumption, the quotient image
is derived by taking the ratio between the input image and the image of the
training subject a, taken under the same illumination

Qx(p) =
ρx(p)
ρa(p)

=
ρx(p)nx(p)s
ρa(p)na(p)s

=
Ix(p)
Ia(p)

=
Ix(p)∑k

i=1 αiIa,i(p)
(4.3)
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In this equation, given the input image Ix(p), and the training images of
subject a taken under a set of different illuminations Ia,i(p), i = 1, ..., k, the
task is to find the coefficients α1, ..., αk that is able to construct the image of
subject a taken under the same illumination as Ix. This is feasible given the
linear subspace theory of [146], [8], and [5]. The coefficients are solved in closed
form by the least square method. Details are found in [147].

Once the quotient image of the subject x is obtained, the images of the same
subject taken under different illuminations can be rendered

I ′x(p) =

(∑
i

βiIa(p)

)
⊗Qx(p) (4.4)

where βi’s are some arbitrary coefficients, ⊗ denotes the Cartesian product, i.e.,
per pixel multiplication. Fig. 4.6 shows two examples of the quotient image,
and the rerendered images under different illuminations.

For face recognition purpose, the illumination-invariant quotient image, or
the image rerendered under the uniform frontal illumination, can be used as the
illumination-normalized face pattern.

Shape from Shading

In [149], a novel method is proposed for solving the shape from shading problem
[66] within the restricted class of human faces. Different from the quotient image
model which assumes constant surface normals of the face class, the method
does not have such restrictions, instead, it estimates the surface normals from
a statistical point of view. Besides, the method uses an augmented Lambertian
model

I = ρ nT s + e = ms + e (4.5)

where e is the error term to model shadows and specular reflections that are
neglected in the original model. From a bootstrap set, in [149] the Yale B
dataset [56], which contains images of different subjects taken under predefined
illumination settings s1, ..., sN , the mean and covariance of the term e at the
predefined illuminations can be estimated by calculating the least-square solu-
tions of m and hence e(si) at each si, i = 1, ..., N . Note Gaussian models are
used for the error term s.
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Figure 4.7: The needle map that shows the estimated surface normals as little
arrows, from [149].

Given an input image with unknown illuminations, albedos, and surface nor-
mals, the illumination s is firstly estimated as a shape-from-shading problem,
using the kernel regression method [149]. Once s is obtained, the mean and co-
variance of the error term e(s) is estimated from m(si) and e(si), i = 1, ..., N .,
again using the kernel regression method. Consequently, the term m containing
the albedo and surface normal information can be recovered by the maximum
a posteriori estimation m̂ = arg maxm p (m|I), and the surface normal is ob-
tained as n = m

|m| . Fig. 4.7 shows an example of the recovered n. Finally, a
illumination-normalized image is created by rendering uniform frontal lighting
on m.

Summary

We have reviewed five representative three-dimensional methods dealing with
the illumination problem on face. The first three methods, namely, linear sub-
space, illumination cone, and spherical harmonics, share the common idea that,
the images of an object taken under different illuminations lie within a low-
dimensional space, which is spanned by some basis images, as shown in Fig.
4.3, Fig. 4.4, and Fig. 4.5. Another common characteristic is that the three
methods result in subject-specific linear subspaces, which require the images of
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(a) (b)

(c)
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Figure 4.8: Examples of quotient images: left - good example when the shadow-
free assumption and constant-shape assumption are well satisfied, middle - ex-
ample when strong shadow exists, right - example when the shape are not well
aligned. In all cases, (a) is the original image, (b) is the quotient image, (c) is
the rerendering of the original image under different illuminations, indicating
the accuracy of the quotient image.

the same subject taken under different illuminations as the training set.
The drawback of these methods is the over-simplified imaging model. First of

all, the objects are assumed to be stationary, but in reality, the faces are subject
to changes with respect to poses and expressions. In other words, the surface
normals are not constant. Moreover, the methods do not explicitly deal with
shadows and reflections. As a result, there are considerable image variations
that cannot be accounted by the low-dimensional subspaces. Furthermore, the
training set of the user under different illuminations are difficult to obtain,
putting forward high requirements on the hardware device.

Instead of deriving a user-specific illumination space, the quotient image
method and the shape from shading method aim to produce the illumination-
normalized output, as a preprocessing method. Furthermore, the methods do
not require the user face image to be acquired under different illuminations,
instead, they rely on a bootstrap set that is already available. The drawback of
them, nevertheless, is still the over-simplified physical models, for example, in
quotient image method the fixed three-dimensional shape of the face class, and
in shape from shading method the Gaussian model of the error term, and the
kernel regression estimation of illumination-dependent parameters.
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To summarize, the three-dimensional methods aim to recover the three-
dimensional information, which is fundamental of a face, therefore, they can
be expected to achieve good performance. However, as converting the three-
dimensional objects to the two-dimensional images is a process with loss of in-
formation, the reverse process will unavoidably have restrictions, such as fixed
surface normals, absence of shadow or specular reflections. In reality, however,
such assumptions are often not true. The shadow-free face images are only
available under frontal or near-frontal lighting conditions. The constant shape
assumption is easily violated by slight pose changes or expressions. In [149],
where the surface normals 
n are estimated in a MAP (maximum a posteriori)
manner without constant shape assumptions, it is also reported that the algo-
rithm can only achieve good performance under near-frontal illuminations.

As an example of the three-dimensional methods, we implemented the quo-
tient image method [147], as illustrated in Fig. 4.8, showing the quotient images
[147] under three situations. In each situation, (a) is the original image, (b) is
the quotient image, and (c) presents the rerendered images from the quotient
image as in (4.4). Fig. 4.8 gives some feeling how the shadows and surface
normal variations harm the quotient image performance. It can be seen that
shadows and mis-alignment of the surface normals cause significant artifacts,
which can be more easily observed from the rerendered images in (c). Although
the results are only shown for the quotient image method, such drawbacks exist
in general for Lambertian model based three-dimensional methods which cannot
effectively deal with shadows and shape variations.

4.2.2 Two-Dimensional Methods

Two-dimensional illumination normalization methods do not rely on recovering
the fundamental three-dimensional information, instead, they work directly on
the two-dimensional image pixel values. Basically, they are image preprocessing
methods designed specially to remove the illumination effects. A simple example
is the offset correction method, which tunes the dynamic range of the pixel
values in an image to the predefined scope, or the zero-mean and unit-variation
normalization of the values. In the following, we will review some popular two-
dimensional illumination normalization methods.

Histogram Equalization

Histogram equalization transforms the distributions of the pixel values in such a
way that a more or less uniformly distributed histogram is realized. This allows
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for areas of lower local contrast to gain a higher contrast without affecting the
global contrast. Histogram equalization has been used in many face recognition
systems [179] [88] [155] for simple preprocessing purposes.

Linear Filters and Homomorphic Filters

Linear high-pass filter is a direct illumination filter, based on the observation
that illuminations often appear as low-pass effects on an image (in [5], a theo-
retical proof of this observation is also given), while the facial feature edges are
intrinsically high-frequency. The high-pass filtering thus removes the extrinsic
illumination effects while retaining the intrinsic image information.

The homographic filter [63] is a technique that acts as high-pass filtering
on the transformed domain of the image. Instead of assuming the illumina-
tion effects as being addictive, like in the normal high-pass filters, the method
assumes the illumination effects to be multiplicative. Therefore, the image is
firstly transformed by applying the logarithmic operation, then the logarithmic
image is high-pass filtered. The final output image is obtained by taking the
exponentials of the homomorphically filtered image.

Retinex Method

The Retinex theory [94], from the term retina and cortex, aims to describe how
the human visual system perceives the color and lightness of a natural scene.
The general idea of the Retinex theory is that the perceived sensation is related
to the relative brightness of the light, denoted by L, and the surface reflectance,
denoted by R, invariant to the illumination. The model is expressed as

I(x, y) = L(x, y) R(x, y) (4.6)

Note that different from the three-dimensional Lambertian model with the
three-dimensional variables s and n as in (4.1), both L and R are scalar values
at the location (x, y).

The retinex model assumes that the illumination effects is multiplicative
on the object surface reflectance. In [79], a single scale retinex algorithm is
proposed, in which the reflectance L(x, y) is estimated by the ratio of the pixel
value at (x, y) and the weighted average of the intensities in the neighborhood.
For simplicity, the logarithm of R is taken
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R(x, y) = log
I(x, y)

I(x, y) ∗G(x, y; s)
(4.7)

where G(x, y; s) is the weighting function in the neighborhood with scale s.
An extension of this single scale retinex algorithm is to take into consideration
multiple scale retinex [78], by

R(x, y) =
smax∑

s=smin

log
I(x, y)

I(x, y) ∗G(x, y; s)
(4.8)

which is reported to give a more robust estimate of the reflectance.

Diffusion Methods

The diffusion processes is a dynamic process, originally observed from the phys-
ical processes, e.g. heat conduction. The diffusion relies on partial differential
equations [23]. With the retinex model, the diffusion methods can be used to
estimate the lighting field L. This is achieved by using the linear diffusion equa-
tion, also known as the heat conduction equation, with the original image as
the initial conditions. The diffusion process is written as a function of the time
index t

Lt+1(x, y) = It(x, y) +
1
N

ΩN∑
ω=Ω1

∇Iω,t(x, y) (4.9)

where Ωi, i = 1, ..., N , is the set of directions in which the diffusion is computed,
∇Iω,t(x, y) is the directional derivative in the direction ω at time t at location
(x, y). Obviously, the diffusion step gradually blurs the image in the predefined
directions.

Diffusion in all directions has the risk of removing meaningful edges. It is
desired that the useful edge information is still preserved after the diffusion. For
this purpose, the anisotropic diffusion is proposed [123], adding spatially-varying
diffusion coefficients that treat different image contents in different ways. The
diffusion coefficients are functions of the gradient in the image. The anisotropic
diffusion is done in such a way that when the gradient is small, i.e., no prominent
edges, the diffusion process in the respective direction is carried out, otherwise
the diffusion process is attenuated to keep the edges. In this manner, the image
noises are removed while the edges are preserved.
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Local Binary Patterns

The Local binary patterns method was proposed in [117], and have proved
to be useful in a variety of texture recognition tasks. The fundamental idea
is simple: each 3 × 3 neighborhood block in the image is thresholded by the
value of its center pixel. The eight thresholding results form a 8-bit binary
sequence, representing the pattern at the center point. The thresholding is
insensitive to illuminations, as it is only a relative measure in the local area. A
decimal representation is obtained by taking the binary sequence as a decimal
number between 0 and 255. Subsequently, a histogram of the LBPs on every
image point is calculated, representing the distribution of 256 patterns in the
face image. This is thus very suitable for texture recognition purposes, as the
texture images have uniform patterns across the image.

For face recognition purposes, it is proposed in [2] that the face image is
firstly partitioned into a set of subimages, and from each subimage a LBP
histogram is obtained, representing the texture distributions at different loca-
tions of the face. The concatenated histogram is then used as the illumination-
insensitive feature vectors for the classification purpose.

Summary

A close examination of the reviewed methods reveals that most of the two-
dimensional illumination normalization methods are essentially linear or non-
linear high-pass filters, emphasizing edges in the original face image. This makes
sense as illumination effect often appear as low-frequency components in the face
image, like the overall brightness changes, while the intrinsic facial features, such
as eyebrows, lips, appear as high-frequency components of the image.

According to the strict physics model, however, the illumination cannot be
simply seen as the low frequency component of the image, as it is a three-
dimensional quantity, and has been modulated by the three-dimensional surface
normals in a complicated way. Illumination also causes high frequency edges
on the two-dimensional face image, most frequently around the nose area, as
well as in other areas, see Fig. 4.1 or Fig. 4.8 for example. The edges caused
by illumination can be very strong, as shadows and reflections often cause sig-
nificant high-frequency components in the image. The biggest problem for the
two-dimensional illumination normalization methods, therefore, is that the high
frequency edges caused by illumination cannot be easily discriminated from the
facial feature edges intrinsic to the face. If local methods are used, only local
views are provided for the filters and all the edges are deemed equivalent. If
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global methods are used, a model must be built up to discriminate the two types
of edges in the first place. Introducing such a model has the risk of bringing er-
rors to the illumination-normalized result, as in the case of the three-dimensional
methods.

Invariance to illumination is very desirable but cannot be easily achieved.
For the three-dimensional methods it is in theory possible by recovering the
lost information through extensive training and complicated calculation, but
the cost is high. For the two-dimensional methods it is theoretically not pos-
sible, as stated in [25]: for an object with Lambertian reflectance there are no
discriminative functions that are invariant to illumination.

In this thesis, therefore, we aim for simple and efficient two-dimensional
methods that are insensitive to illumination. Without rigid restrictions on the
input image as in the three-dimensional methods, the two-dimensional meth-
ods put forward lower requirements on image acquisition process and hardware
devices. We will propose two methods, and show how insensitivity is achieved
through the implementation of them [159] [164]. Furthermore, we will analyze
the generalization capability and discrimination capability of the subsequent
verification after applying the proposed illumination normalization methods,
under the verification framework described in Chapter 3.

4.3 Illumination-Insensitive Filter I: Horizontal
Gaussian Derivative Filters

4.3.1 Image Filters

Gabor, Gaussian, Laplacian, and Gaussian derivative filters are typical two-
dimensional filters widely used in image processing and computer vision [176].
Each of them can emphasize certain type of image textures, and has different
sensitivity to noise and illumination.

Gabor filter is a linear filter whose impulse response is defined by a harmonic
function multiplied by a Gaussian function. It has been widely used due to its
biological resemblance to the response of the human retina [36] [37] [38] [45]
[17]. Gabor filter is expressed as

FGabor(x, y) = cos
(

2π
x′

λ
+ ψ

)
exp

(
−x′2 + γy′2

2σ2

)
(4.10)
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(a) (b) (c) (d) (e)

Figure 4.9: Examples of different two-dimensional image filters: (a) Gabor fil-
ters, (b) Gaussian filters, (c) Laplacian filters, (d) first-order Gaussian derivative
filters, (e) second-order Gaussian derivative filters. Each colum shows the filters
of the same category but with different parameters.

where

x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ (4.11)

In this expression, x and y are the self-variables in the two-dimensional space,
and the other five parameters characterize the Gabor filter: θ - the direction of
the filter, σ - the width of the filter, γ - the aspect ratio of the x and y axis, λ
- the frequency of the filter, and ψ - the phase of the filter. The Gabor filter,
therefore, is sensitive to the image textures of certain direction, width, aspect
ratio, and frequency, as shown by Fig. 4.9 (a).

The two-dimensional Gaussian filter, as shown by Fig. 4.9 (b), is expressed
as

FGaussian(x, y) = A exp
(
− (x− x0)2

2σ2
x

− (y − y0)2

2σ2
y

)
(4.12)

where A is the amplitude, x0 and y0 is the center of the filter, σx and σy are
the width of the x and y directions, respectively. The parameters σx and σy

actually define the aspect ratio of the filters. The Gaussian filter is mostly
used for smooth purposes in image processing [21], especially before applying
high-pass filters, to given more robustness to image noise and to produce more
reliable result.
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The Laplacian filter is the Laplace operation of the Gaussian filter, expressed
as

FLaplacian(x, y) = ∇2FGaussian(x, y)

=
(

∂2

∂x2
+

∂2

∂y2

)
FGaussian(x, y) (4.13)

which is rotational symmetric, and sensitive to isolated dots of different sizes,
as can be observed from Fig. 4.9 (c).

The first and second order Gaussian derivative filters are expressed as

Fd1(x, y) =
∂

∂x′
FGaussian(x, y) (4.14)

Fd2(x, y) =
∂2

∂x′2
FGaussian(x, y) (4.15)

in which

x′ = x cos θ + y sin θ (4.16)

with θ indicating different directions of the derivative.
Of the Gaussian derivative filters, the first-order and second-order Gaussian

derivative filters are most interesting for image processing, as shown in Fig. 4.9
(d) and (e), discriminative of image edges and bars in different directions and
of different sizes.

In literature, very often the image filters are used in a collective way, forming
filter bank that is capable of extracting different facial patterns. The concate-
nated response of the filters are used as the feature vector for the recognition
purpose. A well-known example is the elastic bunch graph method [184], in
which a set of 40 Gabor wavelets (5 frequencies × 8 orientations) are used to
produce the jet output at the facial feature locations. In [18], the Gabor fil-
ter bank is also used to extract an augmented Gabor face feature vector for
recognition. The risk of using the filter bank, however, is that it increases the
dimensionality of the feature, and possibly introduces the curse of dimensional-
ity problem in the training. Besides, some filters in the bank may not be useful,
or even potentially introduce sensitivities to the illumination, due to the specific
textures on which they are sensitive.

4.3.2 Directional Gaussian Derivative Filters

To investigate the sensitivity of the two-dimensional image filters to the illumi-
nation, we show the face image under the side light passing through a bank of
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filterbank

Figure 4.10: The original face image under the side light, filter bank, including
Gabor filters (the first two rows), Gaussian filters (the first half of the third row),
Laplacian filters (the last half of the third row), first-order Gaussian derivative
filters (the fourth row), and second-order Gaussian derivative filters (the fifth
row), and filtered face images.

different filters. As shown in Fig. 4.10, the filter bank contains the Gabor fil-
ters, Gaussian filters, Laplacian filters, and the first and second order Gaussian
derivative filters, with different scales, orientations, and aspect ratios.

It can be observed from Fig. 4.10 that the Gabor filters emphasize textures
of certain orientation, scale, and frequency; Gaussian and Laplacian filters are
not directional, but are selective on the sizes of dots and circles; the first-order
Gaussian derivative filters concentrate on edges of different sizes and directions;
and the second-order Gaussian derivative filters concentrate on bars of different
sizes and directions. As in the original image, the illumination creates edges
mostly in the vertical direction, it can be seen that the illumination effects are
less obvious in images filtered by the horizontal directional filters. For example,
in the filtered image on the lower left corner, almost no indication of side lighting
can be observed. In contrast, in the filtered image by the vertical filters, the high
frequency components caused by the side lighting are more or less emphasized.

Interestingly enough, most of the important face textures, like eyebrows,
eyes, mouth, except nose, are more in horizontal directions than in vertical di-
rections. The nose is informative in the 3D sense, but in the 2D images, it
is often sensitive to illuminations due to the directions of its surface normals.
Moreover, the nose often causes shadows along its center line. Generally speak-
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(a)                  (b) (c)                 (d)

Figure 4.11: Four simple illumination patterns, (a) uniform intensity, (b)(c)(d)
linearly increasing intensity, direction indicated by the arrowhead. The convo-
lution result of the filter with these four simple illumination patterns are zero.

ing, the edges caused by illumination are more often in vertical directions than
horizontal. This has inspired us to use the horizontal filters to make the image
insensitive to illumination.

We select the second-order Gaussian derivative filter in the horizontal direc-
tion, as marked by the rectangle in Fig. 4.10, which is sensitive to bar textures
with certain length and width. The reason of selecting the horizontal direction
has been stated above, and the reason of selecting the specific shape is that the
bar, with approximately the same size with the facial features, is more infor-
mative and robust than edges in the face image. Another good property of the
selected filter is that all the columns of the two-dimensional patch are symmetric
and sum up to zero, which make it invariant to certain types of illumination pat-
terns. Fig. 4.11 shows four examples of the common illumination patterns. In
other words, if in the imaging model, these illumination patterns are addictive,
the linear property of two-dimensional linear filters can guarantee strict invari-
ance to these patterns. For the illumination normalization purpose, this is a
desirable property. If these illumination patterns are modeled as multiplicative,
the homomorphic filtering in the logarithmic domain can be applied.

The selected horizontal Gaussian derivative filters is expressed as

Fd2(x, y) =
∂2

∂y2
FGaussian(x, y) (4.17)

The null space of Fd2(x, y) can be expressed in a general form

P (x, y) = af(x) + by + c (4.18)

where a, b, and c are arbitrary coefficients, and f(x) is an arbitrary function of
x. We show simple proof in the following.
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Proof. Filter the pattern P (x, y) with the proposed horizontal Gaussian deriva-
tive filter Fd2(x, y), we have

Fd2(x, y) ∗ P (x, y) =
∂2

∂y2
FGaussian(x, y) ∗ P (x, y)

= FGaussian(x, y) ∗ ∂2

∂y2
P (x, y)

= FGaussian(x, y) ∗ ∂2

∂y2
(af(x) + by + c)

= FGaussian(x, y) ∗ 0
= 0

Suppose I(x, y) is any input face image, then

Fd2(x, y) ∗ (I(x, y) + P (x, y)) = Fd2(x, y) ∗ I(x, y) + Fd2(x, y) ∗ P (x, y)
= Fd2(x, y) ∗ I(x, y)

meaning that the filter Fd2(x, y) is invariant to any additive patterns P (x, y).

The proof also explains why the second-order derivative is more interesting
than the first order derivative, as the second-order derivative allows a linear term
in the null space of the filter, which can be modeled as the linearly increasing
lighting, shown in Fig. 4.11.

Effective feature extraction is dependent on the size, i.e., σx and σy, of the
Gaussian derivative filters. The size of the filter is selected in such a way that
it can extract important facial texture information, but meanwhile filter out
vertical edges and small-size noises. We estimate the average length and width
of the following three important facial features: eyebrows, eyes, and mouth from
the landmarked BioID database [171], and use them as the parameters of the
Gaussian derivative function.

To illustrate the insensitivity of the proposed filters to illumination, we fur-
ther show more examples in Fig. 4.12. In Fig. 4.12 (a), we take the face images
of the same subject in the Yale B database [56], under different illuminations.
Note that in these images, the lights are not only from the side direction, but also
from the up and down directions. The filtered face images exhibit the horizontal
face textures of the subject, which are insensitive to the different illuminations
in the original images. In Fig. 4.12 (b), we take the Internet face images of
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(a) Images from the Yale B database, same subject

(b) Real life images, different subjects

Figure 4.12: Examples of face images under different illumination and the fil-
tered images. The filtered images are more insensitive to illuminations.

different subjects, under diverse illuminations. It can be observed again that
the strong illumination influences in the original image is not prominent in the
filtered images, while the different image textures of different subjects are still
preserved.

4.4 Illumination-Insensitive Filter II: Simplified
Local Binary Pattern

In the previous section, we have introduced the horizontal Gaussian derivative
filter, which is insensitive to changes of the image textures caused by changes
of the illuminations. Besides the image textures, the image intensities are also
sensitive to illuminations. Strong illumination changes alter the image textures,
while ordinary illumination changes mostly alter the image intensities. In order
to achieve insensitivity to intensities, we propose to use the local binary patterns
(LBP) as a nonlinear filter on the image values.
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Figure 4.13: The LBP operator: the binary values, decimal value, and the
simplified value.

4.4.1 Non-directional Local Binary Pattern

As has been introduced in Section 4.2.2, the LBP is firstly used for texture
recognition [117]. The basic idea is illustrated in Fig. 4.13: each 3 × 3 neigh-
borhood block in the image is thresholded by the value of its center pixel. The
eight thresholding results form a binary sequence, representing the pattern at
the center point. A decimal value is obtained by taking the binary sequence
as a decimal number between 0 and 255, representing one of the 256 possible
relative patterns. The distribution/histgram of the LBP patterns in the image
is then used as the feature of the image.

To use the LBP histogram for face recognition, however, is not as meaningful
as for texture recognition. The distribution of LBPs can be used as a good
representation for images with more or less uniform textures, but for the face
images it is not suitable. A distribution loses connection between the patterns
and their relative positions in the face. To take advantage of both the local
patterns and the positional information, LBP can be instead used as a filter
on the image values. It has been proposed in [64] that the LBP is used as a
preprocessing methods, using the LBP decimal values of the preprocessed pixel
values.

The advantage of LBP is twofold. Firstly, it is a local measure, so the LBPs
in a small region are not affected by the illumination conditions in other regions.
Secondly it is a relative measure, and is therefore invariant to any monotonic
transformation, such as shifting, scaling, or taking the logarithm, of the pixel
values. For a pixel, LBP only accounts for its relative relationship with its
neighbors, while discarding the information of amplitude. Using the LBP as a
preprocessing method not only preserves the good property of the patterns, but
also keeps the positional information of them on the face image.

Essentially LBP preprocessing acts as a nonlinear high-pass filter on the
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Figure 4.14: The effects of LBP preprocessing: first column - the original im-
ages under different illumination intensities; second column - the original LBP
preprocessing; third column - the simplified LBP preprocessing. The face size
is 64 by 64.

image values, according to the fact that it consists of the thresholding operation
similar to differentiation. As a result, it emphasizes the edges in the image
which contains significant change of the values, however, at the same time, it
also emphasizes the noises in the image which contains negligible change of the
values. Because noise occurs in a random manner as far as the direction is
concerned, the exponential weights on the neighbors, from which the decimal
value is calculated, subject the LBP values to considerable variabilities. To
make the patterns more robust and insensitive to the noises occurring in random
directions, we propose to assign equal weights to each of the 8 neighbors. The
simplified LBP value is calculated by adding up all the 1’s in the neighborhood,
as shown in Fig. 4.13. In total the simplified LBP only has 9 possible values.

Fig. 4.14 shows the filtering effects of the original LBP and simplified LBP on
two images with different illumination intensities. It is observed that the original
LBP filtered image exhibits the directional sensitivity of the patterns, while the
simplified LBP filtered image exhibits more robustness to such influence.

We further show more examples from the Yale B database [56] in Fig. 4.15.
We compare the proposed simplified LBP filtering with the original LBP fil-
tering. It is observed that the simplified LBP filtering produce more stable
patterns under diverse illuminations, including extreme illuminations.
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(a)

(b)

(c)

Figure 4.15: Examples in Yale B database: (a) the original face images, (b)
preprocessed by the original LBP, (c) preprocessed by the simplified LBP.
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4.4.2 Interpretation from a Lambertian Point of View

This simplified LBP preprocessing method can be physically interpreted if the
Lambertian imaging model applies and if the lighting conditions are not extreme.
According to the Lambertian model I(x, y) = ρ(x, y)n(x, y)s, we can express
the difference between two neighboring pixels

δI(x, y) = [ρ(x + δx, y + δy)n(x + δx, y + δy)− ρ(x, y)n(x, y)] s
= Δ(x, y)s (4.19)

where δx, δy ∈ {−1, 0, 1}, (δx, δy) �= (0, 0) represent the position of the pixel
to be thresholded with respect to the center point at (x, y), and Δ(x, y) is a
three-dimensional vector related to the physical properties of the face at this
point. According to the calculation of the LBP, only the sign of δI(x, y) has an
influence on the final result, while its amplitude does not matter. Therefore,
the question is essentially whether a change of s will alter the sign of δI(x, y).

We assume that the direction of the light source is more or less frontal,
i.e., from above the image plane, as shown in Figure 4.16. This assumption
avoids situations like strong back lighting or extreme side lighting, which will
also be avoided in realistic scenarios. In the following, we will discuss (4.19)
in three situations according to different characteristics of a face region. The
term invariance range is defined as the range of all possible lighting directions
of s, under which the sign of (4.19), i.e., the dot product of s and Δ(x, y), is
the same.

• Constant ρ and n
Examples of such area are the cheek, forehead, and chin regions. In this
case, Δ(x, y) cannot be strictly 0, so its direction cannot be determined
within a confined scope, due to the simultaneous small changes of both
albedo and surface normal.

When Δ(x, y) is orthogonal to the image plane, as shown by n1(x, y) in Fig.
4.16, the sign of (4.19) cannot be altered as the invariant range for Δ1(x, y)
covers the whole range of the front lighting. When Δ(x, y) changes from
Δ1(x, y) to Δ2(x, y), the invariant range of lighting reduces, gradually
excluding extreme lightings. Therefore, under non-extreme lightings, the
sign of (4.19) is still unchanged. When Δ(x, y) is moving to be parallel to
the image plane, the invariant range is gradually reduced to a half sphere,
which is the minimum possible invariance range. In that case, the sign
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Figure 4.16: Illustration of the invariant ranges for δI(x, y) of different directions
Δ1(x, y) and Δ2(x, y). For lighting directions in this range, the sign of δI(x, y)
is not altered. Δ2(x, y) has a smaller invariant range than Δ1(x, y), but as long
as it is close to n1(x, y), the invariant range does not include extreme lighting
directions.

of (4.19) will be altered by a change of direction of illumination s that
crosses the half sphere, e.g. from the left-sided to right-sided, or from the
up-sided to down-sided.

Such situation results in noisy effects in δI(x, y) with respect to one neigh-
bor. Nevertheless, in smooth regions the 8 surrounding neighbors are con-
stituted of 4 pairs of Δ(x, y) whose directions are nearly opposite. By
adding them together, the noisy effect will be counteracted to an extent,
and the result pattern will be still be relatively consistent even under this
unfavorable situation.

• Constant ρ, changing n
he typical example is the nose region, where Δ(x, y) is approximated as

Δ(x, y) = ρ(x, y) [n(x + δx, y + δy)− n(x, y)]

In this situation, only the change of normal direction matters. Note that in
general, the change of the normal direction n(x+δx, y+δy)−n(x, y) around
the position (x, y) in a small neighborhood is approximately parallel to the
surface at this position. As already discussed in the first situation, when
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the change of normal direction is nearly orthogonal to the image plane,
for example, at the two side facade of the nose, the resulting pattern is
robust. At the front facade of the nose the direction of Δ(x, y) is approx-
imately parallel to the image plane, possibly introducing inconsistency of
the patterns, under the changing illuminations that cross the half sphere.
This explains the unsatisfactory performance of the LBP preprocessing
at the center nose regions in Fig. 4.15. Moreover, in such regions, the
simple Lambertian model that is used to derive δI(x, y) does not strictly
apply due to the existence of shadows, which cause more instability in the
results.

• Changing ρ, constant n
Examples of such area are the eye, eyebrow, or mouth regions. In this
case, Δ(x, y) is approximated as

Δ(x, y) = [ρ(x + δx, y + δy)− ρ(x, y)] n(x, y)

This is the easy situation for the first term is a scalar constant, and only
the direction of surface n(x, y) has an effect on the sign. In these regions,
as can be observed, the normals lie mostly within a small range of n(x, y).
As shown in Fig. 4.16, for such normal directions, the lighting s has a
large invariant range. Therefore, the resulting sign will be constant as
long as the lighting is changing in this range.

This type of the face region is the most informative part for face recog-
nition. It can be observed from Fig. 4.15 that the LBP filtered image
preserves such information in a consistent way under different illumina-
tions.

In the above discussion, almost all the regions in the face are covered. From
Fig. 4.15, it is observed that the a large part of the face textures, i.e., eyes,
mouth, and nose edge, are extracted by the filter in a rather consistent way.
Due to the high-pass filtering characteristic of the thresholding operation, how-
ever, the filtered images also exhibit some noisy phenomenon in other regions,
like forehead, cheeks, and nose center. The subsequent likelihood-ratio based
classifier will further act to reduce the effects of these random noises, as noises
are easily modeled by the probabilistic model.
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4.5 Illumination Normalization in Face Verifica-
tion

The proposed horizontal Gaussian derivative filter and the simplified local bi-
nary pattern filter share a same characteristic: they discard part of the image
information, which is sensitive to illumination. For the horizontal Gaussian fil-
ters, the texture information in the vertical direction are filtered out, and for
the simplified LBP filters, not only the amplitude information, but also the di-
rectional information of the binary patterns, are thrown away. This leads to
the suspicion that due to the loss of such information, the subsequent verifica-
tion performance will possibly suffer. In this section, we will subject the two
methods to the verification framework, and show that the proposed methods
are able to gain stronger generalization capability, and at the same time keep
the discrimination capability.

As has been introduced in Chapter 3, our face verification system is based
on the likelihood ratio, calculated by

L(x) =
puser(x)
pbg(x)

(4.20)

where x is the preprocessed holistic face feature, puser is the user data distribu-
tion, and pbg is the background distribution (including all the possible data). If
the likelihood ratio L(x) is larger than a certain value T , a decision of accept is
made for the input x, otherwise a decision of reject is made.

As a holistic feature, the preprocessed face image is stacked into a feature
vector x. A small enough face image, for example, with the size of 32 × 32,
already has 1,024 pixels, which implies 1,024 degrees of freedom for the feature
vector. The verification of a face image, therefore, is normally in a very high-
dimensional space. High-dimensional space potentially has very large power
of discrimination [166]. In the following, we will explain this with a simple
example.

Suppose each of the user and the background class take up a hyper-sphere
with radius ruser and rbg = a · ruser, a > 1, in a N dimensional space, as shown
in Fig. 4.17. For a single dimension, the ratio of volume between the two spaces
is

Vbg

Vuser
= a (4.21)
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�bg

�user

Figure 4.17: The distribution of the user data and the background data.

which means given an arbitrary point in the one-dimensional space, the chances
that it belongs to the background class ωbg is α times of the chance that it
belongs to the user class ωuser.

From all the N dimensions, however, the ratio becomes

Vbg

Vuser
= aN (4.22)

when N is large, e.g., N = 1000, and a is moderate, e.g. a = 1.5, αN = 1.51000 ∼
10176 is almost infinite. This means that for an arbitrary N -dimensional feature
vector, the chance that it falls into the user class ωuser is almost none. Therefore,
the user face vectors, derived after illumination normalization of the face images
taken under different illuminations, must lie within an extremely small area of
the feature space, otherwise they get easily rejected.

In other words, the discrimination capability of such a likelihood-ratio clas-
sifier in the high-dimensional space is very high, whereas the generalization
capability of it is very low. Generalization capability and discrimination capa-
bility are two equally important aspects in verification. For our MPD applica-
tion, they are closely related to the convenience requirement and the security
requirement, respectively. However, in the high-dimensional feature space, the
prospects of these two aspects are imbalanced.

The problem, on the other hand, can be solved in such a way that in the
illumination normalization stage, more emphasis is put on maintaining its gen-
eralization capability, rather than its discrimination capability. Consequently,
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the relative volume between ωbg and ωuser is reduced, or equivalently, a is re-
duced. When aN is not so prohibitively high, the generalization is basically
much easier. This justifies the large reduction of the image information by our
proposed methods, which makes both class, after illumination normalization,
much smaller in volume. In comparison to the user class, the background class
is more substantially reduced, as the methods discard much information that
is useful for discriminating different subjects. At the same time, the discarded
information is the illumination-sensitive part, which greatly increases the gen-
eralization capability to images of the user taken under different illuminations.
Thanks to the high dimensionality, enough discrimination capability is preserved
despite the loss of such information.

4.6 Experiments and Results

The experimental set up has already been described in Section 3.5. The test
protocols remain the same, i.e., the illumination normalization methods are
evaluated using the cross-session data. We used the face scale of 36 × 36, and
used the full dimensionality in the ROI, i.e. 432, for better generalization. The
Gaussian model is used to estimate the probability densities. As discussed in
the previous section, the balance between the generalization capability and dis-
crimination capability is important. For this reason, we distinguish between two
types of test: discrimination and generalization. The first type is closely related
to the security aspect of the system, and the second type is closely related to
the convenience aspect [157]. Discrimination can be tested on different subjects
under the same illumination, as shown in Fig. 4.18 (a), while generalization
can be tested on the same subject under different illumination, as shown in Fig.
4.18 (b).

In Section 3.3.2, we have proved that the likelihood ratio can be expressed
in the form

lnL(x) =
1
2

⎛
⎜⎜⎝(x− μbg)TΣ−1

bg (x− μbg)︸ ︷︷ ︸
d2
Maha(x) in ωbg

− (x− μuser)TΣ−1
user(x− μuser)︸ ︷︷ ︸

d2
Maha(x) in ωuser

⎞
⎟⎟⎠+ c

(4.23)

where μuser, μbg, Σuser, Σbg are the means and covariances of the user class and
background class, respectively. The second term c is a constant related to the
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(a) Discrimination test

(b) Generalization test

Figure 4.18: Two types of test: discrimination and generalization.

covariances of the two classes, which can be absorbed into the thresholds of the
likelihood ratio without influencing the final ROC measure. As (4.23) shows, the
logarithm essentially reduces the probability measure to the difference between
the two squared Mahalanobis distances in the user and the background class.

We can scatter the two squared Mahalanobis distances, as in (4.23), onto a
two-dimensional scatterplot. Obviously, the decision boundary is a straight line
with a slope of 1. As an example, Fig. 4.19 shows the results of these two tests,
using the two proposed illumination normalization methods, respectively. We
visualize the results in a two dimensional scatter plot, with the two dimensions
indicating the squared Mahalanobis distances in the user and the background
space, respectively.

In both figures, the circles ◦ denote the user training data, the stars ∗ denote
the background data which are used in the training as the impostor data, the
crosses + denote the tester data, and the line denotes the decision boundary.
Such a two-dimensional plot gives a clearer view of the distribution of the user
data, background data, and impostor data. Furthermore, Fig. 4.19 also indi-
cates that the likelihood ratio method involving two opposite classes is superior
than the one-class method, e.g., the maximum likelihood ratio, which involves
only the user class. This can be observed by comparing the distributions along
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(a) discrimination test, simplified LBP (b) generalization test, simplified LBP

(c) discrimination test, horizontal filter (d) generalization test, horizontal filter

Figure 4.19: Scatter plots of the discrimination and generalization tests using
the two illumination normalization methods.
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Figure 4.20: Comparison of the ROCs using different illumination normalization
methods, from up down: simplified LBP, Gaussian derivative filter, zero-mean
and unit-variance normalization, original LBP, histogram equalization, high-
pass filtering, and the unpreprocessed.

the two-dimensional space and along the one-dimensional space (user class axis).
Closer observation of (a) and (b) reveals that the user spaces for different users
differ vastly, by comparing the same background data distribution in the dif-
ferent user spaces on the horizontal axis. Therefore this user-specific space
described by μuser and Σuser is able to give a better description of the user,
compared to a general intra-personal space sharing covariance among different
users [108].

We draw a decision boundary based on the distribution of the user and im-
postor training data. The term c in (4.23) is calculated in the SVM-like way,
from the points in both classes that are distributed nearest to the boundary. It
can be observed, from the statistics on top of each figure, that the simplified
LBP method has relatively higher generalization capability and lower discrimi-
nation capability compared to the horizontal filtering method. To give a more
comprehensive view of the performance, we compute the ROCs of the verifi-
cation performance using the two illumination normalization methods. As in
Chapter 3, the test protocol remains the same.

Fig. 4.20 shows the comparison of the ROCs using different illumination nor-
malization methods. As observed, the simplified LBP achieves the best perfor-
mance, while the Gaussian second-order derivative filtering is also robust against
the cross-session variations. The linear high-pass filtering, which is realized by
subtracting the low-pass filtered image by rotationally symmetric Gaussian fil-
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Figure 4.21: Comparison of the ROCs using different illumination normalization
methods, from up down: simplified LBP, Gaussian derivative filter, zero-mean
and unit-variance normalization, original LBP, histogram equalization, high-
pass filtering, and the unpreprocessed.

ter from the original image, yields poor performance, indicating that direction
of the filter is indeed important in illumination normalization.

The algorithm has also been tested on the Yale database B [56], which
contains the images of 10 subject, each seen under 576 viewing conditions (9
poses × 64 illuminations). Examples of Yale database B and the effects of three
preprocessing methods are shown In Fig. 4.15.

In our test, for each subject, the user data are randomly partitioned into
80% for training, and 20% for testing. The data of the other 9 subjects are used
as the impostor data. To illustrate the performances of different illumination
normalization methods, we used the EER as the performance measure. The
random partition process is carried out 20 rounds for each subject. We obtain
an average EER for each of the 10 subjects. As a result, the performances of
different illumination methods are compared in Fig. 4.21.

It can be seen from Fig. 4.21 that for all the subjects in the Yale database
B, the simplified LBP preprocessing consistently achieves the best performance.
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This indicates that the simplified LBP preprocessing has higher robustness to
large illumination variability compared to the other methods. The original LBP
and the Gaussian derivative filtering methods are also good compared to the
rest and yield comparable performances. In this experiment within the Yale
database, it is interesting to notice that the more the user looks alike to the
average face, the worse the verification performance is, and vice versa.

4.7 Summary

This chapter presents a close study of the illumination normalization problem.
Basically, there are two methodologies to deal with this problem. The first
methodology is to approach the problem from the three dimensional point of
view, trying to the recover the fundamental three-dimensional information of the
face, like surface normals and albedos. This category of methods is theoretically
optimal, but have certain drawbacks that limit their applicability. Firstly, the
widely-used Lambertian imaging model simplifies the situation by assuming
single light source from the infinite distance, and the model does not account
for the shadows and spectacular reflectance that usually exist in face images.
Secondly, over-stringent assumptions are often made in this category of methods,
such as stability of the subject, or fixed three-dimensional shape of the face
class. Thirdly, for training, this category of methods generally need relatively
complicated database with respect to different illuminations, even the database
of the specific user under defined illuminations. Moreover, the computation
involved in the three-dimensional methods is usually high. For our MPD-based
application, the three-dimensional methods can hardly be applied.

The second methodology, in contrast, deals with the face image from the
pixel point of view, and is thus more direct and simpler. A literature review
shows that most of this category of methods tends to remove the low frequency
components, which are easily influenced by the illumination, in a linear or non-
linear way. Due to the complexity of the imaging process, however, the re-
maining high frequency components contain both the illumination-free and the
illumination-sensitive edge information. Strict invariance to illumination by the
two-dimensional filters has been proved to be impossible [25], instead, we aim
to make the filters as insensitive to illumination as possible.

In the face image, there are basically two components that are sensitive to the
illumination changes: the first is certain image textures, which are easily altered
by the illumination, like the textures around the nose region; the second is the
pixel values, which are in close correlation with the illumination intensities. The
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first illumination-insensitive method, the horizontal Gaussian derivative filter,
deals with the first type of sensitivity. It extracts the horizontal-directional
image textures that are important of a face, but orthogonal to the vertical-
directional image textures that are sensitive to illuminations. Besides, we have
proved that the proposed filter is invariant to many patterns that can be modeled
as illumination changes.

The second illumination-insensitive method, the simplified local binary pat-
tern as a filter, deals with the second type of sensitivity. It is strictly invariant
to any monotonic change of the pixel values, as LBP is a relatively measure of
the image patterns. In the simplified LBP, we further remove the sensitivity of
the LBP value to the direction, assigning uniform weights to the relative pat-
terns in the eight directions. This is especially useful to remove the noises in
the image regions where no distinctive textures are present. The method can
be well interpreted by the simple Lambertian model.

Obviously, the two filters both filter out certain image information that is
sensitive to the illuminations. However, will the remaining image information
be enough for the subsequent verification purpose? We answer this question
in Section 4.5, and discussed the generalization and discrimination capabilities
in a high-dimensional space. In theory and by experiments, we have proved
that depside the loss of certain illumination-sensitive information, the proposed
filters still preserve enough discriminative information between the user class
and the background class. Especially the simplified LBP filter is able to achieve
the best performance in our experiments.
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Chapter 5

Decision Level Fusion

5.1 Introduction

1Fusion is a popular practice to increase the reliability of the biometric verifi-
cation by combining the information of multiple classifiers [133] [170] [48] [178].
Generally speaking, fusion can be done at four different levels: sensor level,
feature level, matching score level, and decision level [133] [48], as illustrated in
Fig. 5.1.

Fusion at sensor level is closely related to the specific sensor types and the
corresponding signal/image processing methods. For a more compact review, we
will concentrate on the last three levels, which are closely related to a classifier.
At the feature level, for each classifier, the feature vector is in a high dimensional
space: xi ∈ R

mi ,mi ≥ 1, i = 1, 2, ..., N . Note that the dimensionalities mi and
mj could be different for i �= j. At the matching score level, the feature vector
is reduced to a scalar value, si ∈ R, i = 1, 2, ..., N . At the decision level, the
matching scores si are compared to the thresholds Ti, and the outputs are binary
decisions di ∈ {1, 0}, i = 1, 2, ..., N .

Fusion at the feature level is not often used in practice [133]. This is due
to the fact that the feature sets of different modalities can be incompatible, for
example some feature values might be locations (e.g. of the minutiae set of the
fingerprint) while some might be grayvalues (e.g. of the face images), which
makes it infeasible to combine them on the same ground. Moreover, even if a
combination rule could be designed, the size of the resulting feature vector will

1This Chapter is based on the publication [156], [160], [178].
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Figure 5.1: Different levels of fusion: sensor level, feature level, matching score
level, and decision level.

often increase. This, in turn, increases the complexity of the system, making it
more difficult to design and train the classifier.

Fusion at matching score level is the most popular way of fusion, offering the
best tradeoff between information content and ease of fusion [133]. Matching
score level fusion has been extensively studied in literature, such as [89, 182,
141, 132, 57], etc. There are basically three types of fusion schemes at the
matching score level. The first type of fusion scheme is transformation-based.
Firstly, all the component matching scores are transformed/normalized so that
they are on a comparable scale. Then simple scalar functions are applied on
the transformed matching scores, resulting in a new matching score. Examples
of the functions are product, sum, mean, max, etc. [89] [102] [101]. It can be
proved that under certain ideal situations, for example, taking the product of
independent likelihood ratios can achieve the statistically optimal performance
in the Neyman-Pearson sense [174]. The second type of fusion scheme is density-
based. It relies on the estimation of the joint densities of the matching scores, and
the fusion is done by statistical tests, like the likelihood ratio test [35] [76] [112]
[170] [129] according to the estimated score distributions. This type of fusion
scheme achieves optimal performance if the densities could be accurately learnt,
under the situation when a large number of representative training matching

138



scores are available. The third type of fusion scheme is classifier-based. It
concatenates the component matching scores as a new feature vector, and trains
additional classifiers on them. Examples are neural networks [182], support
vector machines [141], decision trees [132]. This type of fusion needs to train
the relevant classification parameters.

Matching score normalization is necessary for the first type of matching score
level fusion, especially when the fusion is done between different classifiers or
modalities, with the output matching scores defined in their own different ways.
Such normalization is also important for the remaining two fusion schemes, as
it can essentially affect the matching score densities.

Fusion at decision level is less studied in literature, as it is often considered
inferior to matching score level fusion, on the basis that decisions are too ”hard”
and have less information content compared to ”soft” matching scores. One
example of fusion on decision level is the majority vote [44, 89], which counts the
number of decisions d from the component classifiers, and chooses the majority
of the decision as the final decision. Its derivative, weighted majority voting [99],
assigns different weights according to different performances of the component
classifiers. This consequently transforms the output value from logical numbers
to continuous numbers. More of such examples are the Bayesian decision fusion
[84], Dempster-Shafer theory of evidence [91], which also convert the decisions
into scores, with the converting parameters learned from a training score set.

”Soft” measures with information of the confidence level have always been
preferred in fusion. It has been shown by [39] that the combination of two
matchers using AND or OR rule might actually degrade the overall performance
when the performances of component classifiers are significantly different. Due
to this phenomenon, AND and OR rules are rarely recommended in practice
[133]. In this chapter, however, we propose a decision-level fusion scheme, by the
AND and OR rule, in an optimal way such that it always gives an improvement
in terms of error rates over the classifiers that are fused. Here, optimal is in
the Neyman-Pearson sense [174]: at a given false-acceptance rate (FAR) α, the
decision-fused classifier has a false-rejection rate (FRR) β that is minimal, and
never larger than the FRR of the classifiers that are fused at the same α; or at
a given β, the decision-fused classifier reaches a minimal α.

There exist some scenarios in which the proposed decision-level fusion is
preferable to score-level fusion. For example, in template-protected biometrics,
an accept or reject decision is based on the equality between a binary string
extracted from the biometric data and a reference binary string [168]. This
means the matching score is not available for fusion. If such a system is based
on a fuzzy commitment [82] or a fuzzy vault scheme [113], the error correction
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is a part of the extraction of the binary string. The error correction can, within
limits, be tuned to correct a certain maximum number of errors. This determines
the point of operation on the ROC, and is equivalent to tuning a matching score
threshold. Therefore, the proposed optimized decision-level fusion can be used
to fuse two template protected biometric systems, and the optimal fusion can
be achieved by tuning the number or corrected errors. Another scenario is that
when the outliers are present in the biometric data. In that case, as we will
discuss in Section 5.4.1, the proposed OR rule fusion often outperforms the
conventional score-level fusion methods.

This Chapter is organized as follows. Section 5.2 and Section 5.3 presents
the threshold-optimized decision-level theory on statistically independent and
dependent classifiers, respectively. Section 5.4 discusses two useful biometric
application of the proposed method. Section 5.5 presents the experimental re-
sults of the fusion between two face modalities and different algorithms. Section
5.6 summarizes this chapter.

5.2 Threshold-Optimized Decision-Level Fusion
of Independent Decisions

5.2.1 The Decision and the ROC

A decision can be denoted by a logical number d ∈ {1, 0}, where 1 is for ”accept”
and 0 for ”reject”. From a classifier point of view, any decision di is obtained
by comparing the matching scores si with a certain threshold Ti (see Fig. 5.1).
In the proposed decision level fusion with optimized thresholds, we do not pre-
fix the thresholds Ti of the individual component classifiers as is common in
conventional decision-level fusion [39], instead, we optimize the combination of
these thresholds, according to their joint behavior in the AND or OR rule fusion.

Before discussing the optimization process in detail, let us first look at the
characterization of individual classifiers. Each decision d of a classifier is char-
acterized by two error probabilities: the first is the probability of a false accep-
tance, the FAR, α, and the second is the probability of a false rejection, FRR, β.
Obviously, FAR and FRR are both functions of T . When T varies, the FRR can
be seen as a function of the FAR, β(α), known as the detection error trade-off
characteristic (DET) [103]. DET is an indication of classification performance,
revealing the inherent separability of the two opposite classes. An equivalent
measure is the receiver operating characteristic (ROC), in which the detection
rate pd = 1 − β is expressed as a function of α, pd(α) [49]. We will use ROC
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for illustration throughout this and the following chapter. However, as we deal
with the OR rule most of the time, it is more convenient to use pr(β) (pr = 1−α
is the correct rejection rate), a classifier’s rejection characteristic, equivalent to
the ROC, in all the mathematical derivations.

Depending on statistical properties of the component decisions, two differ-
ent situations are identified. First, the multiple decisions di, i = 1, 2, ..., N are
statistically independent. This is desirable in fusion, as it has been observed
that fusion works better when the fused components are independent [44, 89] or
negatively dependent [92]. This situation occurs in many multi-modal biometric
fusion cases, and facilitates a fast training based on ROC, as will be shown in
Section 5.2.3. Second, the multiple decisions di, i = 1, 2, ..., N possess some
dependencies. Threshold-optimized decision-level fusion can also be solved for
dependent decisions in a non-parametric manner, but the training is much slower
and the optimized thresholds are more sensitive to the training set. Actually,
the ROC-based training for independent decisions suffices for most fusion appli-
cations, even when some dependency exists. This is analog to the Naive Bayes
classifier [44], which also assumes independency between different features, but
whose good performance in dependency cases has been acknowledged in a wide
range of applications [187] [43].

In all the following derivations, we will mainly focus on the OR rule, which
is of more practical interest than the AND rule.

5.2.2 Problem Definition

Suppose we have N statistically independent decisions di, i = 1, 2, ..., N . To
analyze the OR rule we have to work with the rejection rate, β and pr. After
application of the OR rule to decisions di, i = 1, ..., N , we have, under the
assumption that all decisions are statistically independent, that

β =
N∏

i=1

βi, pr(β) =
N∏

i=1

pr,i(βi) (5.1)

with β the false-rejection rate and pr the correct-rejection rate of the final fused
decision, respectively. The optimized OR rule decision fusion can then be for-
mally defined by finding

p̂r(β) = max
βi|

∏
βi=β

N∏
i=1

pr,i(βi) (5.2)
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where p̂r is the maximal correct rejection rate at β. In other words, the βi’s of
the component classifiers are tuned during this optimization, so that the fused
classifier can give maximal pr at a fixed β =

∏N
i=1 βi.

Likewise, the optimized AND rule decision fusion can be also formulated

p̂d(α) = max
αi|

∏
αi=α

N∏
i=1

pd,i(αi) (5.3)

It is easily proved that the optimized correct-rejection rate p̂r(β) is never
smaller than any of the pr,i ’s at the same β

p̂r(β) ≥ pr,i(β) i = 1, ..., N (5.4)

Because, by definition

p̂r(β) = max
βi|

∏
βi=β

N∏
i=1

pr,i(βi) ≥
N∏

j=1

pr,j(βj)

∣∣∣∣∣∣∏N
i=1 βi=β

(5.5)

As it holds for any classifier that, pr,i(1) = 1, (5.4) readily follows by setting
βj = β and βi = 1 for all i �= j.

By solving the optimization problem in (5.2) and (6.18), the optimal opera-
tion points for every component classifiers are obtained.

5.2.3 Problem Solution

In the work of [188], a similar optimization problem as in (6.18) is reformulated
in a logarithmic domain. Under the assumption that log(pr,i(βi)) is a concave
function of log(βi), it is proposed to find the optimal operation points by solving
the unconstrained Lagrange optimization problem

max {log pr − λ log β} = max

{
N∑

i=1

log(pr,i(βi))− λ

(
N∑

i=1

log(βi)

)}
(5.6)

=
N∑

i=1

max {log(pr,i(βi))− λ log(βi)}

Due to the log-concavity assumption of each individual ROC, this optimiza-
tion can be done by maximizing the value of log(pr,i(βi)) − λ log(βi) for each
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ROC individually, and thus avoiding exhaustive search. For more details, see
[188] [119]. One drawback of this method is that it does introduce a possibly
too restrictive assumption on the ROC. The concavity of prβ and pd(α) always
holds in the original domain, but it does not always apply in the logarithmic
domain. To avoid this drawback, we present an alternative approach, without
any additional assumption or approximation. We propose that the optimization
problem (5.2) and (6.18) be solved in a recursive manner: first fuse two arbi-
trary classifiers from the set of component classifiers, compute the ROC of the
fused classifier, and then fuse the resulting ROC with the next arbitrary com-
ponent ROC, and so on. This means that every time we only have to fuse two
classifiers, thus avoiding the exponential explosion in computational complexity
in combining multiple classifiers. We summarize the solution in the following:

1. Given N component classifiers, each characterized by pd,i(αi) or pr,i(βi),
i = 1, ..., N . Each operation point corresponds to a threshold.

2. Take any two ROCs and do threshold-optimized decision fusion.

3. Replace the two ROCs with the optimally fused ROC. Note that for a
single operation point on the already fused ROC, there are now multiple
thresholds coming from the component classifiers.

4. Repeat step (2)-(3) until all the classifiers have been combined.

5. A final ROC pd(α) or pr(β) is obtained, with each operation point corre-
sponding to N thresholds from the N component classifiers.

The only problem left now is the fusion of two ROCs in step (2). In real
situations, p̂d(α) is not available in its analytical form, but instead characterized
by a set of discrete operation points. Therefore, we solve the fusion of two ROCs
in a brute-force manner. Suppose we have two ROCs, denoted by N1 and N2

discrete operation points, respectively

ROC1 = {(βi
1, pi

r,1)}, i = 1, 2, ..., N1

ROC2 = {(βj
2, pj

r,2)}, j = 1, 2, ..., N2
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The fusion of these two classifiers, under the independent assumption, can
have in total N1 · N2 possible combinations after OR rule fusion (AND rule
fusion can be derived similarly by using α and pd)

OR rule : {(βi
1β

j
2, pi

r,1p
j
r,2)}

where i = 1, 2, ..., N1, j = 1, 2, ..., N2. Obviously, each pair of operation
points corresponds to a pair of thresholds (T1, T2) with T1 from the first clas-
sifier and T2 from the second classifier. To get the optimized fusion, we select
those operation points which form a concave hull of all the possible combina-
tions. Fig. 5.2 illustrates this optimization process. In this example, we have
generated the genuine and impostor scores independently for two classifiers.
The genuine scores of the two classifiers has a multivariate Gaussian distribu-
tion of N

(
(2.5, 2.5),

(
1 0
0 1

))
, while the impostor scores of the two classifiers has a

multivariate Gaussian distribution of N
(
(0, 0),

(
1 0
0 1

))
. In Fig. 5.2 (c) and (d),

the dots denote all the possible combinations for the OR rule and the AND
rule fusion, and the solid line marks the concave hull, which is optimal in the
Neyman-Pearson sense. The optimized thresholds for decision level fusion are,
therefore, obtained as the thresholds corresponding to the selected points of
operation. It can be seen that both the OR rule and the AND rule fusion result
in a better ROC than the original two ROCs.

Note that the optimality of the solution is strictly true in independent cases,
and the ROCs in Fig. 5.2 (c) and (d) are the estimation of the fused ROCs
under the independency assumption. When the matching scores have some de-
pendencies, as we will show in the next section, the margin of ROC improvement
is smaller compared to that of the independent case.

5.2.4 Optimality of Recursive Fusion

This procedure leads to an optimal solution, which is shown below for the OR-
rule. The proof for the AND-rule is similar. In the following derivation, the
matching scores of different classifiers are assumed to be independent.

Let I and J denote the index sets, such that I ∩ J = ∅ and I ∪ J =
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Figure 5.2: Threshold-optimized decision fusion in the independent case: (a)
the scatter plot of two matching scores; (b) two ROCs of the two matching
scores, respectively; (c) all the possible OR fused points and the optimal ROC
selected; (d) all the possible AND fused points and the optimal ROC selected.
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{1, . . . , N}. Define

pIr (β) = max
βi|

∏
βi=β

∏
i∈I

pr,i(βi), (5.7)

pJr (β) = max
βj |

∏
βj=β

∏
j∈J

pr,j(βj), (5.8)

and
pIJr (β) = max

βIβJ =β
pIr (βI)pJr (βJ ). (5.9)

First, expanding pIJr (β) results in a product
∏N

k=1 pr,k(βk) for some βk, k =
1, . . . , N , satisfying

∏N
k=1 βk = β. Therefore, we have

pIJr (β) ≤ max
βk|

∏
βk=β

N∏
k=1

pr,k(βk). (5.10)

Second,

pIJr (β) ≥ pIr (βI)pJr (βJ )
∣∣
∀{βI ,βJ }: βIβJ =β

≥
∏
i∈I

pr,i(βi)

∣∣∣∣∣
∀{βi}i∈I :

∏
βi=βI

∏
j∈J

pr,j(βj)

∣∣∣∣∣∣
∀{βj}j∈J :

∏
βj=βJ

=
N∏

k=1

pr,k(βk)

∣∣∣∣∣
∀{βk}N

k=1:
∏

βk=β

≥ max
βk|

∏
βk=β

N∏
k=1

pr,k(βk). (5.11)

The latter inequality follows by choosing the βk such that they maximize pr(β).
On combining (5.10) and (5.11) we have,

pIJr (β) = max
βk|

∏
βk=β

N∏
k=1

pr,k(βk). (5.12)

This means that if the optimal ROCs are known for arbitrary disjoint index
subsets I and J , the overall optimal ROC can be found by optimally fusing
the subsets. Note that this statement is strictly true in ideal conditions, i.e.,
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when the ROC is complete, with every point present on the ROC. In practice,
however, the ROC cannot be complete, but represented by a limited number of
operation points. The order of fusion, in this case, has some influences, but to
an extent only as small as any other common numerical problems. As long as
there are enough operation points from the ROC, the influences of the fusion
order can well be neglected.

5.2.5 Additional Remarks

The ROC is a very useful but indirect indication of the score distributions.
A highlight of the proposed decision-level fusion method is that it works on
the operation points on the ROC, instead of on the matching scores as many
other conventional fusion methods do. In practice, the number of the training
matching scores could be enormous, but after calculating the ROC from the
set, the number of ROC operation points is usually much smaller. On the other
hand, when the number of the training matching scores is very small, the ROC
points can even be interpolated and smoothed to produce a robust estimation.
This simplifies the problem by converting any number of training scores to
a manageable number of operation points on ROC. The optimization of the
proposed decision-level fusion is again very simple. This makes the algorithm
very efficient with training data sets of any size.

The computation involved in the training stage is the estimation of the ROC
and the selection of the optimal ROC points. Given the training score set, it
is very easy to calculate the ROC by comparing the scores with a number
of thresholds, and estimate the FAR and FRR. The optimization, as in (5.2)
and (6.18), is achieved simply by taking the outer boundary points in the α −
pd plane. In the verification stage, the calculation is extremely fast: for N
classifiers, only N comparisons and N − 1 AND or OR operations are required.
Both the training and the fusion are simpler compared with advanced score-level
fusion methods such support vector machines or likelihood ratio methods based
Gaussian mixtures.

Score normalization is important in matching score level fusion. From the
Neyman-Pearson point of view, it is most desirable that the matching score s(x)
be normalized in such a way that it is equal, or proportional to, the likelihood
ratio of the feature vector x: F (s(x)) = p(x|ωgen)

p(x|ωimp) , where F (·) is a monotonic
normalization function. Different normalization functions result in different
decision boundaries in matching score level fusion. In comparison, an advantage
of threshold-optimized decision level fusion is that the optimization is invariant
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to any monotonic transformation of the original matching scores. A monotonic
function changes the absolute value of the matching scores, but does not alter
the relative relationship between the matching scores. The operation points on
the ROC, therefore, cannot be changed. As a result, the optimized operation
points are invariant to any monotonic normalization. This implies that the final
performance remains identical for any kind of score normalization function F (·).

There is always certain discrepancy between training and testing scores,
which is one of the causes of overtraining. In many score-level fusion methods,
such as the likelihood ratio method, SVM, or NN, there are a number of pa-
rameters to be estimated from the training data. The more parameters needed
for characterization, the more flexible the boundary is in the score space, and
the more sensitive it is to overtraining. In our decision-level method, we expect
that, due to the coarser partitioning of the score space, the proposed fusion is
more robust to model deviations between the training and testing data. This
will be supported by results of the the fusion experiments in Section 5.5.

5.3 Threshold-Optimized Decision-Level Fusion
on Dependent Decisions

It has been shown that to solve the proposed decision fusion problem under
independency assumptions, we work directly on the ROCs and skip matching
scores. In the dependent case, however, the fusion performance cannot be esti-
mated as in (5.1). Instead, we return to the matching score space, and estimate
the fusion performance in a nonparametric manner.

To illustrate the fusion process, we simulate two matching scores with depen-
dency. The genuine matching scores have a multivariate Gaussian distribution of
N
(
(2.5, 2.5),

(
1 0.25
0.25 1

))
, while the impostor matching scores have a multivariate

Gaussian distribution of N
(
(0, 0),

(
1 0.25
0.25 1

))
. The matching scores are depicted

by a scatter plot in a two-dimensional space, as shown in Fig. 5.3 (a).
To estimate the performance of fusion, we created an threshold grid covering

the matching score space, as shown in Fig. 5.3 (a) by the cross points. The
false-acceptance rate α and detection rate pd at each operation point can be
estimated simply by applying the AND or OR rule, and then counting the
number of false-acceptances or false-rejections. Suppose we have Ngen genuine
samples and Nimp impostor samples, then from two classifiers, we have Ngen

pair of genuine scores (sgen
1 , sgen

2 ), and Nimp pair of impostor scores (simp
1 , simp

2 ).
At any threshold (T1, T2), the ROC points by the OR and AND fusion can be
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Figure 5.3: Threshold-optimized decision fusion in the dependent case: (a) the
scatter plot of two matching scores, and the threshold grid; (b) two ROCs of the
two matching scores, respectively; (c) all the possible OR fused points and the
optimal ROC selected; (d) all the possible AND fused points and the optimal
ROC selected.
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easily calculated

αOR(T1, T2) =

∥∥∥{(simp
1 , simp

2 )|(simp
1 ≥ T1) ∨ (simp

2 ≥ T2)}
∥∥∥

Nimp

pd OR(T1, T2) =
‖{(sgen

1 , sgen
2 )|(sgen

1 ≥ T1) ∨ (sgen
2 ≥ T2)}‖

Ngen

αAND(T1, T2) =

∥∥∥{(simp
1 , simp

2 )|(simp
1 ≥ T1) ∧ (simp

2 ≥ T2)}
∥∥∥

Nimp

pd AND(T1, T2) =
‖{(sgen

1 , sgen
2 )|(sgen

1 ≥ T1) ∧ (sgen
2 ≥ T2)}‖

Ngen

where ‖·‖ denotes size of the set. Consequently, for every threshold on the
grid, a ROC points can be obtained, as shown in Fig. 5.3 (c) and (d) by
dots. Like the independent case, we again select those operation points which
form a concave hull of the candidate points, as shown in Fig. 5.3 (c) and (d).
The optimized thresholds for decision level fusion is therefore obtained as the
thresholds corresponding to the selected points of operation.

Without the independency assumption, the presented decision fusion still has
the good property that, similar to (5.4), the resulting ROC outperforms either
component ROCs. This can be proved by the fact that in fusion, the original
points of (α, pd)’s on ROC1 and ROC2 are still existent in the pool of candidate
points to be selected2. Therefore, the resulting ROC, after the optimization of
the concave hull, is again more favorable over the original ROCs in the Neyman-
Pearson sense. It can be noticed, however, the margin of improvement becomes
smaller compared to the independent case, as dependency of the two classifiers
implies less added information.

2For ROC1, the original operation points are obtained when the operation points of ROC2

are tuned to extremes: for AND rule, T2 → −∞; for OR rule, T2 →∞. The same is true for
ROC2.
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(a) (b)

Figure 5.4: (a) Normal samples of the user data, (b) outliers in the user data.

5.4 Application of Threshold-Optimized Decision-
Level Fusion to Biometrics

In the previous section, we have presented the theory of threshold-optimized
decision fusion and the optimization method in detail. In this section, we will
discuss some interesting applications of threshold-optimized decision fusion.

5.4.1 OR fusion in Presence of Outliers

In this section, we will discuss the situation when the proposed OR rule de-
cision level fusion is especially favorable. Outliers, in biometric verification,
refer to the biometric data which belong to the genuine user, but deviate from
the genuine user distribution. Taking face for example, outliers can be caused
by extraordinary expressions, poses, illuminations, or mis-registrations. Some
examples are given in Fig. 5.4. Outliers cause false rejections most of the time.

Suppose the outlier scores have a probability density function of Ψout(s).
This function could be approximated by the impostor distribution Ψimp(s),
based on the fact the outlier scores have values that could otherwise be taken
as impostors. Suppose the genuine score has a probability density function of
Ψgen(s), and the prior probability of outliers occurring in the genuine score is
po. Taking into account the outliers, the probability of the genuine score s is

Ψ′gen(s) = (1− po) ·Ψgen(s) + po ·Ψimp(s) (5.13)
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Suppose we are fusing two independent classifiers, both with outliers in the
genuine score. The joint probability of two independent samples s1 and s2 is

Ψ(s1, s2) = (1− po,1)(1− po,2) ·Ψgen,1(s1)Ψgen,2(s2)
+po,1(1− po,2) ·Ψgen,1(s1)Ψimp,2(s2)
+(1− po,1)po,2 ·Ψimp,1(s1)Ψgen,2(s2)
+po,1po,2 ·Ψimp,1(s1)Ψimp,2(s2) (5.14)

where the subscripts 1 and 2 indicate the first and the second classifier, respec-
tively.

In the example in Fig. 5.5, for the first classifier, po,1 = 0.03, Ψgen,1(s1) ∼
N(1.5, 1), Ψimp,1(s1) ∼ N(−1.5, 1), while for the second classifier, po,2 = 0.10,
Ψgen,2(s2) ∼ N(2, 1), Ψimp,2(s2) ∼ N(−2, 1). Fig. 5.5 (a), (b), and (c) show
the boundaries of AND rule decision fusion, OR rule decision fusion, sum rule
matching score fusion, respectively, at the fixed FAR α = 0.01. Fig. 5.5 (d)
compares the resulting ROC by different fusion schemes. Under the given situ-
ations with outliers, OR rule decision fusion achieves the best performance in a
large range, for α > 0.005. The AND rule fusion, in comparison, is not suitable
for the given score distributions as it only results in the better of the two ROCs.

It is interesting to notice that in (5.14), the OR rule boundary accepts all
the terms except the last one, which is negligible because of the small value of
po,1po,2. This explains why OR rule decision fusion is suitable for this kind of
problem.

The type of matching score distribution as simulated in Fig. 5.5 is not a rare
scenario. It is very often the case that a number of outliers occur in the genuine
class, thus making the genuine distribution extending to the impostor class. The
impostor class, however, is less likely to produce such a comparable proportion
of ”outliers”. Such phenomenon can be explained by the great discriminating
power of a high-dimensional space [166], which makes a classifier in it more
ready to reject than to accept. This is especially true for our likelihood-ratio
based classifier, as has been introduced in Chapter 3 and discussed in Chapter
4.

Other fusion methods could also be applied to the fusion problem with out-
liers, such as density-based fusion, e.g. likelihood ratio test, or classifier-based
fusion, e.g. SVM, NN, which also takes care of the outliers during training. How-
ever, the resulting decision boundary is more dependent on the training data.
To accommodate the outliers, for example, the outliers should be included in
the training set. In comparison, OR-rule fusion always has good tolerance with
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(a) (b)
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Figure 5.5: (a) scatter plot of the scores and OR rule boundary; (b) scatter plot
of the scores and AND rule boundary; (a) scatter plot and sum rule boundary;
(a) comparison of the ROCs.
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outliers no matter if they are included in the training set or not. The advantage
of the proposed OR rule decision fusion, moreover, is its simplicity. First, a
normalization step is not required; second, the calculation is faster, as only a
limited number of operation points are involved in the calculation. Third, there
is potentially less overtraining possibilities, as the decision boundaries is much
simpler than those of the SVM or NN.

5.4.2 Fusion of Identical Classifiers

Fusion of identical classifiers is a useful scenario in practice, which means that
given one classifier and multiple input samples, one can fuse the multiple de-
cisions, each decision from a different input but from the same classifier [161].
Without changing the original system, improvement of the performance can be
readily achieved. For simplicity, we first discuss the AND rule decision fusion
on two identical classifiers. In a similar way, the OR rule fusion on two identical
classifiers can derived.

Suppose we have two statistically independent decisions with identical ROC
pd,1(α1) = pd,2(α2) = pd(α), the optimization problem can be formulated as

p̂fusion(α) = max
α≤x≤1

{
pd(x) · pd(

α

x
)
}

(5.15)

where x is an intermediate variable, and p̂fusion(α) is the detection rate at α
under the optimal AND fusion.

For any 0 < α < 1, pd(x) · pd(α
x ) is a continuous function of x. Taking the

derivative of pd(x) · pd(α
x )) with respect to x, we have

∂pfusion

∂x
= p′d(x)pd(

α

x
)− α

x2
pd(x)p′d(

α

x
) (5.16)

Obviously, when x =
√

α, i.e. α1 = α2 =
√

α, the derivative reaches zero.
This means when the two classifiers have the same operation points, the ex-
tremum is reached. This extremum is most often a maximum, in which cases
the original ROC (α, pd(α)) is mapped to the AND-rule fused ROC

(
α2, p2

d(α)
)
3.

In rare cases, however, for some α’s on some type of ROCs, this stationary point
3By such a mapping, improvements can be expected for most ROCs, but for some type of

ROCs, for example, pd(α) = αγ (0 ≤ γ ≤ 1), the fused ROC is unchanged after this mapping.
It also happens when such a mapping results in a degraded ROC, as will be shown in Fig. 5.7
(a).
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corresponds to a minimum. Then the optimum is found at the border, either
x = 1 or x = α, which means that only one of the two ROCs is taken.

To illustrate the fusion of two identical classifiers, we simulated random data
to generate the original ROC. Fig. 5.6 and Fig. 5.7 show two examples of fusion
results on two identical classifiers. In the first example Fig. 5.6, the genuine
score has a Gaussian distribution of N(3, 1), while the impostor score has a
Gaussian distribution of N(0, 1). In the second example Fig. 5.7, the impostor
score has the same Gaussian distribution of N(0, 1), but the genuine score has a
multimodal Gaussian distribution, with 90% of the data of the Gaussian distri-
bution N(3, 1), and the remaining 10% of the data of the Gaussian distribution
N(0, 1), simulating the outliers. In the first example of Fig. 5.6, improvements
of performance can be observed both from AND and OR fusion. In the second
example in Fig. 5.7, however, OR rule fusion is more suitable than AND rule
fusion for the ROC with this specific shape. For AND fusion, it can be observed
that in the low FAR region, fusion brings improvement, while in the high FAR
region, fused performance is actually worse, therefore the original ROC is taken.
This illustrates the case when identical operation points of the two component
ROC correspond to a minimum instead of a maximum. This example shows
that the solution to (5.15) is related not only to the shape of the original ROC,
but also to the specific value of α in the resulting ROC.

We have discussed the fusion of two identical classifiers, and proved that in
the optimal case, the component classifiers either work on identical points, or on
extreme points (α = 1 for AND fusion or β = 1 for OR fusion). This conclusion
can be extended to the fusion of three or more classifiers. Suppose we have N
identical classifiers pd,1 = · · · = pd,N = pd, the Lagrange optimization problem
can be formulated in the logarithm domain

PL(α) = log pd(α1) + · · ·+ log pd(αN )
−λ(log α1 + · · ·+ log αN − log α) (5.17)

At a fixed α, taking derivative with respect to the component αi, i = 1, ..., N ,
and at the extremum point, all the derivatives are zero. We have

∂PL

∂α1
=

p′d(α1)
pd(α1)

− λ

α1
= 0

...
...

∂PL

∂αN
=

p′d(αN )
pd(αN )

− λ

αN
= 0 (5.18)
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Figure 5.6: Example 1: (a) AND rule decision fusion on identical classifiers. (b)
OR rule decision fusion on identical classifiers.
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Figure 5.7: Example 2: (a) AND rule decision fusion on identical classifiers. (b)
OR rule decision fusion on identical classifiers.
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Therefore,

λ =
α1p

′
d(α1)

pd(α1)
= · · · = αNp′d(αN )

pd(αN )
(5.19)

A solution to (5.18) and (5.19) is

α1 = · · · = αN = α
1
N , λ =

α
1
N p′d(α

1
N )

pd(α
1
N )

(5.20)

where α is a known quantity. Therefore, α1, ..., αN and λ in (5.20) are legal
solutions and correspond to the extremum of (5.17). As in the case of fusing
two identical classifiers, this extremum is most often a maximum. When it
corresponds to a minimum, the maximum occurs on the border, i.e., only part
of the component classifiers are switched on.

For identical classifiers, the AND rule decision fusion is similar to the min
rule matching score fusion (i.e. taking the minimum score as the final score),
while the OR rule decision fusion is similar to the max rule matching score fusion
(i.e. taking the maximum score as the final score) [89]. The decision fusion of
identical classifiers, therefore, is to a certain extent comparable to the max or
min rule matching score fusion. However, there are still differences which make
the proposed decision fusion more favorable. Firstly, the decision fusion will
avoid those situations when the fusion could actually degrade the performance
(as illustrated in Fig. 5.7 (a)), and choose to use only part of the classifiers;
Secondly, when the component classifiers are different, the proposed decision
fusion automatically finds different thresholds for them, while for the max or
min rule matching score fusion, the thresholds is the same for all component
matching scores, so the scores have to be normalized first.

5.5 Experiments and Results

5.5.1 Experiments on the MPD Data

For intermodal optimized decision fusion, we present an example of a face veri-
fication system on the mobile device [157, 158]. The decision level fusion is done
on identical classifiers from multiple inputs. In the original face verification sys-
tem, faces are first detected by the Viola-Jones method [179], then registered by
aligning prominent facial landmarks also detected by Viola-Jones method [10],
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(a) t = 0.2 sec

(b) t = 1 sec

(c) t = 5 sec

(d) t = 60 sec
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as introduced in Chapter 2. Illumination normalization is done by applying the
simplified local binary patterns as an preprocessing method, as introduced in
Chapter 4. The feature vector is then obtained by stacking the pixels from the
preprocessed image. A likelihood ratio classifier [6, 174] is used, as introduced
in Chapter 3.

In the new face verification system with decision fusion, two frames with
certain intervals t are taken as the input, and decision fusion is done with
the two output decisions. From a database of 6 subjects collected for mobile
scenarios, the genuine scores are taken from one subject, while the impostor
scores are taken from the other 5 subjects collected under the same illumination.
According to the length of the interval, the two decisions exhibit different degree
of dependency. The longer the interval, the less the dependency. We will test
different time intervals t of 0.2 sec, 1 sec, 5 sec, and 60 sec. Furthermore, we will
compare and proposed AND and OR rule decision fusion with the conventional
matching score fusion by the sum rule. If the interval t is long enough so that
the two input feature vector x1 and x2 are statistically independent, the sum
rule is in theory the best fusion scheme for the log-likelihood ratios. It can be
easily proved

s(x1, x2) = log
puser(x1, x2)
pbg(x1, x2)

= log
puser(x1)puser(x2)
pbg(x1)pbg(x2)

= log
puser(x1)
pbg(x1)

+ log
puser(x2)
pbg(x2)

= s(x1) + s(x2) (5.21)

Fig. 5.8 shows the scatter plot and the ROCs of fusion at different time
intervals t. An advantage of this specific application is that, according to Section
3.1, in most cases, the optimal thresholds of the two classifiers do not need to be
trained, and can be simply taken identical. To illustrate this, in this example we
skipped training and simply took identical thresholds for two classifiers in cases
of both AND and OR decision fusion. Actually, this causes problems with AND
decision fusion for the presented type of ROC, like in Fig. 5.8 (a) and (b), where
the AND rule fused ROC is actually worse than the original. This shows that
the AND rule decision fusion cannot improve the performance of the presented
type of ROC. In comparison, the OR rule decision fusion works especially well,
even outperforming the sum rule, which phenomenon could be explained by
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Figure 5.9: Example from the FRGC database: the 2D texture and the 3D
shape recorded simultaneously recorded.

the existence of outliers. As can be further observed, with the increase of t,
the dependency of the two decisions becomes less, and the improvement of
performance by fusion is more obvious. When t = 1 sec, the EER of the ROC
by the OR rule decision fusion is already reduced to half of the original. This
implies that by taking an extra face frame, the performance of the original
system can be easily improved by means of simple OR rule decision fusion.

5.5.2 Experiments on the 3D-Face Data

Another context of this work is the EU FP6 3D-Face project [1], which aims to
use 3D facial shape data in combination with 2D texture data for reliable pass-
port identification [156]. The first database that the algorithms were developed
on is the FRGC database [124], which contains the 2D face texture and 3D face
shape data collected simultaneously. An example of the two modalities is shown
in Fig. 5.9. The database contains data of 465 subjects and has in total 4,007
samples. The classifiers that produce the matching scores are trained on 309
subjects in the database. To train fusion, another 100 subjects are taken to ob-
tain the matching scores from the trained classifier, resulting in 25,520 genuine
scores and 2,568,190 impostor scores. The remaining 56 subjects are used for
evaluation, resulting in 12,270 genuine scores and 700,910 impostor scores.

For either modality, the matching scores are derived and provided by L-1
Identity Solutions (L1), Cognitec Systems (COG), and the University of Twente
(UTW). In the L-1 method, the matching scores are computed using the hier-
archical graph matching (HGM) methods [69], which represents the facial ge-
ometry by means of a flexible grid. Similar to the biological structures in the
human brain, a set of specific filter structures is assigned to each node of the
graph and analyzes the local facial characteristics [70] [184]. With HGM, ap-
proximately 2,000 characteristics are used to represent a face and an individual
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identity. For the analysis of a face, the shape (”landmarks”) and the structure
(”features”) of the face are separated, making HGM a very robust facial recog-
nition method providing a basis for both 2-D and 3-D face recognition. In the
COG method, for 2D faces, the feature components are retrieved by applying
local image Gabor transforms at facial feature locations. These component are
then concatenated to form the raw 2-D face feature vector. For 3-D faces, the
face shape is firstly registered and smoothed to form the raw 3-D face feature
vector. Global transformations are applied on the raw feature vectors in both
cases, in order to maximize the ratio of inter-personal variance to intra-personal
variance [108]. The final scores are obtained by simple similarity measures of
the transformed feature vectors. In the UTW methods, holistic approach is
taken, and the feature vectors are derived by the conventional PCA and LDA
transformation, and the scores are computed as the likelihood ratio of the fea-
ture vector in the feature space. More details of the mathematics can be found
in [6].

For comparison, we also implemented three other typical score-level fusion
methods, namely, sum rule (transformation-based), likelihood ratio (density-
based), SVM (classifier-based), which are explained in more detail in the fol-
lowing:

1. Sum Rule
In this transformation-based method, we used the simple and effective Z-
normalization [133], which normalizes the genuine or impostor scores to
unit variance. In the comparison, we use the Z-normalization based on
the genuine scores4.

2. Likelihood Ratio
In this density-based method, the score density is first estimated using
Gaussian mixture models (GMM) [51], as in the work of [129]. Then the
likelihood ratio is calculated based on the estimation of both genuine and
impostor score distributions.

3. SVM
In this classification-based methods, we used SVM as the classifier. The
decision boundary is trained using the radius basis function (RBF) kernels

4We only present this one for readability of the figures. Z-normalization based on the
impostor scores and other normalization techniques like Min-max-normalization and Tanh-
normalization [133] have also been tried and yielded similar results.
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[30]. The scores are firstly Z-normalized with a variance of 1, and the RBF
radius is chosen as 1. More implementation details can be found in [77].

Fusion is done between the two face modalities with scores derived from
different algorithms. In each experiment, a training set is used first to find the
parameters for fusion. In the decision-level fusion, the parameters refer to the
optimized thresholds; while in the score-level fusion, the parameters refer to
the normalization factors in the method (1), distributional parameters in the
method (2), and SVM coefficients in the method (3). Then the evaluation of
the methods are conducted on the testing data. For each fusion method, the
resulting ROC are calculated and compared. Note that here we do not compare
only a single operation point, instead we give an overview of the performance
by plotting ROC, i.e., all the possible operation points.

Fig. 5.10 to Fig. 5.13 show 4 different combinations of the fusion between
the face texture modality and shape modality. The ROC and the EER are
shown, as well as the training score and testing score scatter plot. As observed,
in Fig. 5.10 and 5.12 the OR rule fusion outperforms all other score-level fusion
methods with respect to EER. The method even works better than the theoret-
ically optimal LLR method. This can be explained by the discernible difference
between the training and testing scores, which means that the probability den-
sity function might be over-tuned during the training. For the same reason,
the support vectors are also different in the training and test set, thus account-
ing for the unsatisfactory performance of the SVM fusion method. Compared
to the score-level fusion, the proposed ROC-based decision-level fusion are less
sensitive to the training-testing data deviation, as indicated by Fig. 5.10. An-
other factor that makes the OR rule fusion favorable is its robustness against
the outliers, as explained in Section 5.4.1. The AND rule fusion, however, does
not work well, yielding performance sometimes even worse than the component
ROC5.

In Fig. 5.11 the OR rule fusion works well, outperforming the score-level
fusion methods except the likelihood ratio one, on the FAR range from 0.5%
to 100%, but not as well on the lower FAR range (note the logarithm scale
exaggerates this part). The likelihood ratio fusion method, as in [112] and
[129], remains the best. In Fig. 5.13 the OR rule fusion also performs worse
than the LLR method in the lower FAR region, but equally well as far as the
EER is concerned.

5In theory, this is not possible, but it happens when the training set and testing set are
different.
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(a) Scatter plot of the training and testing data
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Figure 5.10: Fusion between the UTW texture and UTW shape data: scatter
plot and the fusion results. 163



(a) Scatter plot of the training and testing data
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(a) Scatter plot of the training and testing data
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(a) Scatter plot of the training and testing data
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Figure 5.14: Fusion of all the 6 classifiers: (a) training ROCs, (b) testing ROCs.
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We have further combined all the 6 classifiers: 3 texture classifiers and 3
shape classifiers. The fusion is done in a recursive way as introduced in Section
5.2.4. We show the fusion results on both the training ROCs and the testing
ROCs in Fig. 5.14. It can be seen that the proposed decision-fusion outperforms
other score-level methods, with considerable margin in the testing case. Such
good performance is accounted by the outlier phenomenon existing in some
component scores, as well as the obvious discrepancies between the training
and testing data, which can be observed by comparing the 6 component ROCs
in Fig. 5.14 (a) and (b).

The LLR fusion is able to achieve the statistically optimal results and does
outperform all the other methods in some experiments presented above, because
it has the strongest theoretic support. Nevertheless, we still emphasize three
properties of the proposed decision fusion: (1) Good performance at lower com-
plexity. For example, the LLR fusion method needs to learn the joint probability
distribution of the training scores, either in a parametric or a non-parametric
way, and the SVM fusion methods needs to learn the support vectors and their
corresponding weights, all of which has high computational complexity. (2)
Tolerance to overtraining. This is mainly due to the simplicity of the decision
boundary, as well as the fact that we only work on the ROC operation points,
which is already a reduced representation of the scores. (3) Insensitivity to out-
liers. This has been elaborated on in Section 5.4.1, and illustrated in Fig. 5.10,
in which the outlier phenomenon is most pronounced.

For the decision-level fusion, we have implemented the optimization meth-
ods derived in Section 5.2, which is simple, but assumed independencies between
the scores. Despite the certain degree of dependency between the two compo-
nent scores, however, the final fused ROC on the testing data still demonstrate
satisfactory performance. This can be explained by the fact that the main pur-
pose of the proposed solutions is to find the optimal combination of thresholds
which have the highest estimation of performance, instead of estimating the
performance itself. In many dependent cases, the optimized thresholds are still
plausible solutions, although the fused ROC is over-estimated. This is similar
to the Naive Bayes classifier [44], which uses the independency assumption to
estimate the class-conditional probabilities and then compare them. The esti-
mated probabilities may very well be inaccurate, but the rank of them remains
correct in many cases. The optimality of Naive Bayes classifier has been studied
in literature [187] [43].
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5.6 Summary

In this chapter, a new fusion method called threshold-optimized decision-level
fusion is proposed [160] [165]. Both the theoretical analysis and the experimental
results have been presented. In theory, the proposed decision fusion will always
bring improvements over the original classifiers that are fused, and in practice,
it also improves the system performance effectively, in a way comparable or even
better than the conventional matching score fusion.

Fusion at decision level by AND and OR rule is not a popular practice,
but we have shown that it can be done in an optimal manner, by optimiz-
ing the thresholds of component classifiers, such that it can be very beneficial.
By threshold-optimized decision fusion, matching score normalization is not
needed, and the component classifiers are automatically balanced through the
optimization process in training, thus reducing the risk of performance degrada-
tion, when the component classifiers have significantly different performances.
In this way the certain drawbacks related with AND/OR decision level fusion
[39] can be avoided. It is also noteworthy that the optimization is only based
on the limited number of operation points on the ROC instead of directly on
the matching scores.

We have further introduced two scenarios in which the proposed decision fu-
sion is especially useful. The first is the outlier scenario. The OR rule decision
fusion is very robust to the outliers in the user class, and can easily achieve
better performance than many score-level fusion methods. The second is the
fusion of identical classifiers. This scenario is taken for the MPD face verifi-
cation, in which a more reliable decision is made through fusing the decisions
of consecutive frames. Good performance is demonstrated by the experimental
results in Section 5.5.

Threshold-optimized decision-level fusion based on optimizing the ROC is
an interesting fusion method both in theory and in practice. From a Neyman-
Pearson point of view, the improvements brought by the proposed decision
fusion on FAR (FRR) with respect to a fixed FRR (FAR) is always very desirable
for any biometric system.
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Chapter 6

Score Level Fusion

6.1 Introduction

1In the last chapter, we have introduced a novel fusion method at the decision
level by optimizing the thresholds of the component classifiers. In this chapter,
we will concentrate on the score-level fusion of biometrics, which is recognized
as the most powerful level of fusion [133], offering the best tradeoff between
information content and ease of fusion.

As introduced in Chapter 5, there are three types of fusion schemes at the
score level [133]. The first type of fusion scheme is transformation-based. Firstly
all the component matching scores are transformed (or normalized) so that they
are on a comparable scale. Then simple scalar functions are applied on the
transformed matching scores, resulting in a new matching score. Examples are
product, sum, mean, max, etc. [89]. It can be proved that under certain ideal
situations, for example, taking the product of independent likelihood ratios,
can achieve the optimal performance in the Neyman-Pearson sense. The second
type of fusion scheme is density-based. It relies on the estimation of the joint
densities of the matching scores, and the fusion is done by statistical tests, such
as the likelihood ratio test [35, 76] according to the user score and imposter
score distributions. This type of fusion scheme achieves good performance if the
densities can be well learnt, given that a large number of representative training
matching scores are available. The third type of fusion scheme is classifier-
based. It concatenates the component matching scores as a new feature vector,

1This Chapter is based on the publication [162], [163].
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and train additional classifiers on them. Examples are neural networks [182],
support vector machines [141], decision trees [132]. This type of fusion needs to
train an extra classifier, therefore the performance is dependent on the specific
training set of matching scores.

The proposed optimal likelihood ratio based fusion fits into all the three types
listed above. It is transformation-based because the way to derive the likelihood
ratio from the score can be seen as a well-designed transformation. It is density-
based because the resulting likelihood ratio is closely related to density. It is
classifier-based because the likelihood ratio of the score is an optimal statistic for
score classification in the Neyman-Pearson sense [174]. The biggest advantage
of the proposed method over the methods in literature, however, is that it avoids
the often inaccurate estimation of the genuine and impostor score probability
density functions. Instead, we directly map the matching score to its LLR value.
The complexity, difficulty, and inaccuracy involved for density estimation are
thus avoided, while the robustness and flexibility are gained because of the
mapping strategies we use [163].

We further propose a hybrid fusion framework [162], which combines the
proposed LLR based score-level fusion with the OR rule fusion at the decision
level. The benefit of introducing the hybrid fusion is that it is able to improve the
performance of the proposed fusion method even further, especially when there
are outliers in the matching scores, because the OR rule fusion brings additional
robustness. We will demonstrate this by the comparison experiments in Section
6.5.

This chapter is organized as follows. Section 6.2 introduces the optimal
likelihood ratio based fusion theory, and Section 6.3 presents the methods of
estimating the mapping from the score to the likelihood ratio. Section 6.4
introduces the hybrid fusion method. Section 6.5 gives experimental results of
the proposed methods and the hybrid fusion based on the proposed methods,
and compares them with other fusion methods. Section 6.6 sums up this chapter.

6.2 Optimal Likelihood Ratio Based Fusion

6.2.1 The LLR and the ROC

The receiver operation characteristic (ROC) is a commonly accepted measure
of the verification performance. It denotes the detection rate pd as a function
of the false acceptance rate α. Theoretically, pd and α are computed from the
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genuine and impostor score distributions φg and φi

α(t) =
∫ ∞

t

φi(s)ds (6.1)

pd(t) =
∫ ∞

t

φg(s)ds (6.2)

where t is the application-defined threshold. The ROC is then expressed by the
curve {α(t), pd(t)}tmax

t=tmin
.

Taking the derivative of the ROC, we have

dpd

dα
=

dpd
dt
dα
dt

=
φg(t)
φi(t)

(6.3)

and this is, by definition, the likelihood ratio of the matching score at s = t.
Therefore, it follows for the log-likelihood ratio

l(s) = log(
dpd

dα
)
∣∣∣∣
α=α(s)

(6.4)

This result implies that, if the ROC pd(α) is known, the log log likelihood ratio
of the matching score s can be computed by (6.4) without first estimating φg(s)
and φi(s).

In practice, the ROC is estimated from a set of genuine and imposter
matching scores, by first comparing the matching scores with the application-
defined threshold t, and then counting the ratio of falsely and correctly ac-
cepted samples. The resulting ROC is in the form of a set of discrete points:
{α(t), pd(t)}tmax

t=tmin
.

As an example, Fig. 6.1 shows a ROC from the simulated genuine and im-
postor matching scores. In this example, we assume that the genuine scores have
a Gaussian distribution of N(1, 1), and the impostor N(−1, 1). The operation
points corresponding to 3 different thresholds t = −0.8, t = 0 and t = 0.8 are
marked to illustrate the relationship between different thresholds and operation
points.

6.2.2 LLR-Based Fusion

Let l1(s1), ..., lN (sN ) denote the log-likelihood ratios of statistically independent
matching scores s1, ..., sN , respectively. The log likelihood ratio of the fused
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Figure 6.1: ROC of the simulated scores. The example operation points related
to different thresholds t and the derivative at the points are also shown.

biometric s = [s1 ... sN ] is then given by

l(
s) = log
φg(
s)
φi(
s)

= log
∏N

k=1 φg,k(sk)∏N
k=1 φi,k(sk)

= log
N∏

k=1

φg,k(sk)
φi,k(sk)

=
N∑

k=1

lk(sk) (6.5)

Notice that (6.5) can be seen as a normalized sum rule, with lN (sN ), ..., lN (sN )
the normalization functions.

The independency assumption is satisfied in many cases, especially when
biometrics of different modalities (e.g. face, fingerprint, iris) are fused. In most
cases when this assumption is not strictly satisfied, the LLR-based fusion in
(6.5) still yields nearly optimal performance. This is similar to the Naive Bayes
problem [44], which also assumes independency between different features, but
whose optimality in dependency cases has been acknowledged in a wide range
of applications [187][43].
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6.3 Estimation by Fitting

6.3.1 Robust Estimation of the Derivative

The theory of estimating the LLR, as introduced in Section 6.2.1, is clear from
the mathematics point of view. In practice, however, care must be taken in
calculating the mapping l(s). The reason is as follows. Firstly, instead of a
smooth function, the ROC is a set of discrete points empirically derived from
the training matching scores, and possibly contains noise. Secondly, taking
the derivative of the ROC tends to amplify the noise that already exists. To
overcome this problem, we use a smooth fitting method for estimating the l(s)
in a simple and robust manner.

In theory, the ROC is a concave function on the α− pd plane [49], as shown
in Fig. 6.1. Therefore, the mapping l(s) in (6.4) should be a monotonically
increasing function. To guarantee this property, in our estimation of ROC, we
always take the concave hull of the estimated ROC points {α(t), pd(t)}tmax

t=tmin

as a preprocessing of the ROC, before taking its derivative. This avoids the
amplification of the noise on the estimated ROC caused by taking its derivative.

Another important problem is how to estimate the LLR for a certain s = t on
the ROC. This can of course be done by calculating the differences of neighboring
points in a discrete way, but we choose to make this estimation more robust by
first fitting a smooth (continuously differentiable) function in the neighborhood
of this operation point, and then calculating the derivative of the function at
the point. Fig. 6.2 illustrates the method in a small region of the ROC in Fig.
6.1. The derivative at the center operation point is estimated by first fitting
with a second order polynomial, and then take its derivative.

Now that the LLR at a certain s is obtained, the remaining problem is how
to estimate the continuous mapping l(s). As we can obtain the LLR at any s,
an obvious way is to calculate the mapping using the above mentioned method
at every s with sufficiently fine scale, constituting a look-up dictionary. This
method, however, is not only calculation-insensitive, but also noise-sensitive as
the estimation of a point is local to its neighborhood on the ROC. Besides, the
derivative of the ROC becomes inaccurate at extremely small or large thresholds,
due to the insufficient number of the samples to reliably estimate the ROC
operation points at the tail of distribution, as indicated by Fig. 6.3 (a). We
again use the parametric fitting method to estimate the mapping of l(s).

It is worth noting that the l(s) function is a monotonically increasing func-
tion, so it is important that this property be satisfied in the parametric fitting.
To give sufficient robustness as well as flexibility of the fitted l(s), we propose
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Figure 6.2: The way to calculate the derivative at an operation point by fitting
within its neighborhood. In this example, a second order polynomial function
is adopted.
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Figure 6.3: (a) Parametric fitting of the mapping l(s), with the fitting scope
shown. (b) Illustration of the fitting scope with respect to the score distribution
functions.
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to use the piecewise polynomial fitting. The method fits the function with
piecewise ”smooth” low-order (e.g., 1-3) polynomials, where ”smooth” means
continuity of the value as well as derivatives within the fitting scope. In this
way the local smoothness and global flexibility of the curve are satisfied simul-
taneously. In simple situations, a single polynomial function would be sufficient
to describe the mapping function l(s), for example in the Gaussian distribution
case as can be strictly proved. The mathematics of the fitting will be presented
in the following. The minimum square error criterion is used to estimate the
fitting parameters.

6.3.2 Robust Estimation of the Mapping

Single Polynomial Fitting

Suppose we use a p-order polynomial to fit a set of matching scores s1, ..., sN and
their corresponding LLR values l1, ..., lN , let x = [cp, ..., c1, c0]T be the unknown
parameters, where ci is the ith polynomial coefficient, i = 0, ..., p. The problem
can be formulated as⎛

⎜⎜⎜⎝
sp
1 sp−1

1 . . . s1 1
sp
2 sp−1

2 . . . s2 1
...

...
...

...
...

sp
N sp−1

N . . . sN 1

⎞
⎟⎟⎟⎠x =

⎛
⎜⎜⎜⎝

l1
l2
...

lN

⎞
⎟⎟⎟⎠ (6.6)

To avoiding overtraining, the number of sample points N is normally much
larger than the fitting order p, and x is taken as the least square solution of
(6.6).

Piecewise Polynomial Fitting

Suppose we have N matching scores s1, ..., sN and N corresponding LLR values
l1, ..., lN . Assume the matching scores range from smin to smax, and three pieces
are taken from this range: [smin, t1], [t1, t2], [t2, smax], where smin < t1 < t2 <
smax

2.
In the following derivation, we take polynomials of the order 2. Higher order

piecewise-polynomials can also be used, with similar mathematics derivation,
but too high orders are not recommended because they possibly cause overfitting

2More pieces can be taken, and the conjoining points ti can be taken in any defined manner
(e.g. uniform intervals). Similar derivations follow.
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and oscillation. Let the three polynomial function be F1(s), F2(s), and F3(s),
then the fitting error is to be minimized

∑
smin≤si≤t1

(F1(si)− li)
2 +

∑
t1<sj≤t2

(F2(sj)− lj)
2 +

∑
t2<sk≤smin

(F3(sk)− lk)2

(6.7)

As defined previously, smooth piecewise polynomial fitting means continuity
of the value as well as derivatives within the fitting scope. Then the following
equations should be satisfied at the conjoining points t1 and t2

F1(t1) = F2(t1), F2(t2) = F3(t2) (6.8)

F ′1(t1) = F ′2(t1), F ′2(t2) = F ′3(t2) (6.9)

This is a second order optimization problem with constraints, and can be
formulated into a standard quadratic programming problem with respect to the
polynomial coefficients of the three piecewise functions. A standard quadratic
programming problem is written as follows [114]

x = arg min
(

1
2
xT Hx + fx

)
,

subject to one or more conditions: A1x ≤ b1, A0x = b0 (6.10)

The unknowns are the nine polynomial coefficients of the three functions.
Let us put them into one coefficient vector

x = [c1,2, c1,1, c1,0, c2,2, c2,1, c2,0, c3,2, c3,1, c3,0]T (6.11)

where for each ci,j , the first subscript i denotes the function number, and the
second subscript j denotes the coefficient order. It is easy to transform the 9-
coefficient vector back to the 3-coefficient vector of the three individual functions
via a 3× 9 matrix

[c1,2, c1,1, c1,0]T = P1x, P1 =

⎛
⎝ 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎞
⎠

178



[c2,2, c2,1, c2,0]T = P2x, P2 =

⎛
⎝ 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

⎞
⎠

[c1,2, c1,1, c1,0]T = P3x, P3 =

⎛
⎝ 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎠

To deal with the three piecewise polynomials, partition the input matching
scores into three ranges [smin, t1], [t1, t2], [t2, smax], and assume the scores in the
first range be {s1, ..., sN1}, in the second range be {sN1+1, ..., sN1+N2}, in the
third range be {sN1+N2+1, ..., sN1+N2+N3}, where N1 + N2 + N3 = N . Define
three matrices in similar form as in (6.6), each matrix with three columns, in
the second order polynomial case

S1 =

⎛
⎜⎝ s2

1 s1 1
...

...
...

s2
N1

sN1 1

⎞
⎟⎠

S2 =

⎛
⎜⎝

s2
N1+1 sN1+1 1

...
...

...
s2

N1+N2
sN1+N2 1

⎞
⎟⎠

S3 =

⎛
⎜⎝ s2

N1+N2+1 sN1+N2+1 1
...

...
...

s2
N sN 1

⎞
⎟⎠

Likewise, define three vector of the LLR values

l1 =

⎛
⎜⎝ l1

...
lN1

⎞
⎟⎠

l2 =

⎛
⎜⎝ lN1

...
lN1+N2

⎞
⎟⎠
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l3 =

⎛
⎜⎝ lN1+N2+1

...
lN

⎞
⎟⎠

The function to minimize, (6.7), can be rewritten as

‖ S1P1x− l1 ‖2 + ‖ S2P2x− l2 ‖2 + ‖ S3P3x− l3 ‖2

Let Q1 = S1P1, Q2 = S2T2, Q3 = S3T3. By extending this function and
with reference to (6.10) we obtain

H = QT
1 Q1 + QT

2 Q2 + QT
3 Q3 (6.12)

f = −QT
1 l1 −QT

2 l2 −QT
3 l3 (6.13)

The smoothness at the conjoining points can be formulated as the equality
constraints. Put the two conjoining points t1 and t2 into two vectors t1 =
[t21 t1 1]T t2 = [t22 t2 1]T , then (6.8) can be written as

tT
1 P1x = tT

1 P2x, tT
2 P2x = tT

2 P3x

The first order derivative can be obtained via the following matrix

D =

⎛
⎝ 0 0 0

2 0 0
0 1 0

⎞
⎠

Using D, (6.9) is then written as

tT
1 DP1x = tT

1 DP2x, tT
2 DP2x = tT

2 DP3x

Referring to (6.10), we have

A0 =

⎛
⎜⎜⎝

tT
1 P1 − tT

1 P2

tT
2 P2 − tT

2 P3

tT
1 DP1 − tT

1 DP2

tT
2 DP2 − tT

2 DP3

⎞
⎟⎟⎠ (6.14)

b0 =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ (6.15)
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So far we have completely converted the smooth piecewise polynomial fitting
problem into a standard quadratic programming problem as in (6.10), with H,
f , A0, b0 calculated by (6.12), (6.13), (6.14), (6.15). The problem is then
solved using the standard quadratic programming methods. Further reference
of quadratic programming can be found in [114].

A simple example of the parametric fitting of the mapping l(s) is illustrated
in Fig. 6.3, and some more complicated examples will follow in the next sec-
tion. In this example, the same simulated data as in Fig. 6.1 is used. The
discrete points are estimated from the ROC derivatives using the aforemen-
tioned method. To exclude the unreliable points at extremes, we restrict the
fitting scope to be within a reasonable range of s, defined by α(s) < 1− ε and
pd(s) > ξ, where ε and ξ are small quantities. For example, when we have M
positive scores and N negative scores, ε can be set at 3

N and ξ at 3
M , because we

assume that the α and pd estimated with less than 3 samples are unreliable. It
can be observed from Fig. 6.3 (b) that the fitting scope is the region where the
genuine and impostor score overlap. Actually, outside this overlapping scope,
the estimation of the LLR is not critical any more, or in other words, classifi-
cation can be very reliably done for very large or very small matching scores.
As l(s) is monotonic increasing, we fit outside this scope with a linear function
adapting the slope at the ends of polynomials.

By using such parametric fitting, the LLR of any s can be easily calculated
from a small number of parameters. The minimum square error (MSE) criterion,
furthermore, makes the estimation robust because it optimizes on the global
fitting scope. We have observed that most often 2-4 polynomials are sufficient to
represent the flexibility of the l(s) function. In Fig. 6.3, for example, the genuine
and impostor scores are two gaussian distributions with identical covariances,
therefore, the l(s) function can be proved to be linear, i.e. with the polynomial
order of 1. The parametric fitting, therefore, is very suitable to account for the
degree of freedom of such a function.

6.3.3 Visualization of the Decision Boundary

It is interesting to investigate the decision boundary of our proposed method in
the matching score space. To illustrate this we give both simulated and realistic
examples. In the simulated example, the first biometric has the the genuine score
distribution of N(1, 1), and impostor score distribution of N(−1, 1); the second
biometric has the the genuine score distribution of N(1, 3), and impostor score
distribution of N(−2, 2). The fitting functions, scatter plot and boundaries, and
the ROCs are given in Fig. 6.4.
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Since the two classes have Gaussian joint distributions with different co-
variances, the theoretically optimal decision boundary should be a second-order
polynomial. Our optimal-LLR fusion method by polynomial fitting, therefore,
is able to yield the ideal shape of boundary. By calculating the LLR values in
the two dimensional score space using (6.4) and (6.5), we can obtain the LLR
field and then derive the boundaries by drawing the contours of this field. Sup-
pose we have two mapping functions l1(s1) and l2(s2), then the contours can be
written in the mathematic form

l(s1, s2) = l1(s1) + l2(s2) = t t = {t1, ..., tN} (6.16)

where t is a set of thresholds corresponding to different performance (FAR or
FRR) requirements. Obviously, in the fitting scope, the shape of contour is
determined by the parametric functions of l1(s1) and l2(s2). The implies that
the robustness and flexibility of the mapping function is actually the robustness
and flexibility of the decision boundary. Outside the fitting scope, the boundary
is linear, which is discriminative enough for uncritical classification situations.

We give a more difficult example from the public database BA-fusion (Bio-
metric Authentication Fusion Benchmark Database) [128] developed from the
XM2VTS database [107], which contains the matching scores from face video
and speech data. The matching scores are derived from various baseline systems
(for details, see [128]). We show in Fig. 6.5 one example from the database,
and demonstrate that our method works very well in difficult cases when the
probability density is very difficult to estimate.

It can be observed that due to its particular distribution, the mapping l(s)
of the first matching score has more flexibility than any examples given before.
For clarity we only show the estimated points within the fitting scope. Within
this scope we partition the data into 3 segments. In the given example, the
partitioning is uniform with respect the s axis, but it can also be defined other-
wise. Under the global constraint that the curve is continuous and smooth, we
fit each segment with a second order polynomial. Mathematics details are found
in Section 6.3.2. The resulting curve exhibit both robustness and flexibility. In
Fig. 6.5 (c) we can see that the resulting decision boundary is very well tuned
to the distribution, while at the same time very smooth and robust, enabling
better generalization capability of the boundary.
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6.4 Hybrid Fusion

In order to further improve the performance of the proposed LLR based fusion,
we incorporate it into the hybrid fusion framework, which combines the score-
level and decision-level fusion and takes the advantage of both fusion modes
[162]: the score-level fusion is advantageous because it is able to take care of the
arbitrary score distributions, while the decision-level fusion is beneficial because
it deals with outliers in the matching scores, which part cannot be accounted
for by probability distribution functions [160].

The reason of introducing the hybrid fusion is that, although the LLR based
method is plausible in the sense that it is density-based, in practice there are
still sometimes outliers in the matching scores which cannot be modeled by the
densities. The OR rule decision level fusion is especially suitable for handling
such situations, as proved in [162]. Therefore, by hybrid fusion, further improved
performance over the proposed LLR based fusion can be expected.

6.4.1 A Decision-Level Fusion Framework

The decision fusion framework has been proposed in Chapter 5, and the hybrid
fusion is an extension of this work. Suppose we have N component ROCs
pd,i(αi), i = 1, ..., N , derived from N independent classifiers. In practice, the
OR rule fusion is of more interest, so we will work with the reject rate for the
impostors, with pr,i = 1−αi as the correct reject rate, and βi as the false reject
rate. Under the independency assumption, the operation points after fusion is

β =
N∏

i=1

βi, pr(β) =
N∏

i=1

pr,i(βi) (6.17)

with β the false reject rate and pr the correct reject rate of the OR rule fused
decision. The optimization of the OR rule fused ROC, pr(β), is done in such a
way that at a fixed β, the pr of the fused ROC is the highest. The optimality is
thus in the Neyman-Pearson sense [174], formally formulated as

p̂r(β) = max
βi|

∏N
i=1 βi=β

{
N∏

i=1

pr,i(βi)

}
(6.18)

which means that the resulting detection rate p̂r at β is the maximal value
of the product of the detection rates at a certain optimal combination of βi,
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i = 1, ..., N , which satisfy
∏N

i=1 βi = β. In other words, at a prefixed β, the
highest pr is obtained by optimizing (6.18). Consequently, the thresholds of
component biometric systems can be readily obtained as the ones corresponding
to the optimized operation points.

It is easily proved that the optimized correct reject rate p̂r(β) in (6.18) is
never smaller than any of the component pd,i, i = 1, ..., N , at the same β. The
solutions of the optimization problem in and (6.18) are given in [160].

6.4.2 Score-level Fusion vs. Decision-level Fusion

Score-level fusion is the most popular way of fusion. The advantage of it is
obvious. As a quantitative similarity measure it contains rich information about
the biometric input, and yet it is still easy to process compared to sensor-
level or feature-level data. In many cases, score-level fusion is able to achieve
theoretically optimal performance. For example, taking product of the matching
scores, which are independent and proportional to the likelihood ratio (in the
feature space), is an ideal estimation of the joint likelihood ratio. Also, in the
density-based score-level fusion [35], the ROC corresponding to the likelihood
ratio statistic (in the matching score space), is optimal in the Neyman-Pearson
sense.

A disadvantage of score-level fusion is that, because it works in the matching
score space, it is subject to considerable flexibilities. For example, different nor-
malization methods of the matching scores lead to different decision boundaries.
Also, a too small training set of scores might easily overfits the data, especially
in methods with flexible boundaries.

There are also advantages and disadvantages of the decision-level fusion.
First of all, the framework is simple and clear from a mathematical point of
view. Only a compact set of operation points is involved, and the Neyman-
Pearson criterion is very beneficial for any biometric system. Besides, the opti-
mization is not influenced by any score normalization, to which the ROCs are
strictly invariant. Furthermore, the OR rule fusion is very suitable for many
real world biometric applications, with outliers existent in the genuine class
[160]. Basically, when the distributions of the genuine and impostor class are
not symmetric, as is often true, the AND or OR decision fusion is very likely to
fit because they have unsymmetrical support for the two classes.

The common criticism on decision-level fusion is that it has small and rigid
information content. In the framework described in Section 6.4.1, however, the
decision-level fusion has been adapted in such a way that the operation points
are not fixed anymore, instead they are tunable and can be optimized with
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respect to performance. The disadvantage of decision-level fusion, nevertheless,
is still the limited possibility of decision boundaries, because the operations are
restricted to thresholding, AND, and OR.

6.4.3 Hybrid Fusion Scheme

In the general decision fusion framework, any two or more ROCs can be fused
together. A biometric system, which has already been fused, can be easily put
into this framework. This enables us to design a new hybrid biometric fusion
scheme, combining score-level and decision-level fusion. Suppose the decision-
level fusion can be expressed by

rdecision = D(r1, ..., rN ) (6.19)

where r1, ...rN are the component ROCs to be fused, D is the decision fusion
function, and rdecision is the resulting ROC. Similarly, suppose the score-level
fusion is expressed by

rscore = S(r1, ..., rN ) (6.20)

where S is the score fusion function, and rscore is the resulting ROC. The general
hybrid fusion function H is defined as

H(r1, ..., rN ) = D (r1, ..., rN , S1, ..., SM ) (6.21)

where S1, ..., SM denotes the ROCs of different score-level fusion methods.
In Section 6.4.1, we have assumed independency between the component

ROCs. In hybrid fusion, however, the assumption is not satisfied, as the inputs
in (6.6), r1, ..., rN and S(r1, ..., rN ), are dependent. Strictly speaking, we have to
go back to the matching score space, and take into account the joint probabilities
of the component matching scores. For example, suppose we are fusing two
classifiers with matching scores s1 and s2, with the genuine score distribution
p(s1, s2|ω1), and the impostor score distribution p(s1, s2|ω0). The optimization
at decision level, in the Neyman-Pearson sense, is

p̂d(α) = max
t1,t2

{∫ ∞

t1

∫ ∞

t2

p(s1, s2|ω1)ds1ds2)
}

(6.22)

subject to
∫ ∞

t1

∫ ∞

t2

p(s1, s2|ω0)ds1ds2 = α
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There are methods to solve (6.22), however, in practice we found that the
independency assumption, i.e., solving (5.2) to obtain the thresholds correspond-
ing to the optimal αi’s, is just adequate. The independency assumption might
change the estimation of p̂d(α), but the thresholds t1 and t2 corresponding to its
maximal value is often unchanged, or close enough to the real t1 and t2 under
the dependent assumption. Actually, we have observed that in many cases, the
results from independency assumption is even better than the results from the
dependency solutions. This can be explained by that fact that the optimization
problem in (6.22) has much larger complexity than (5.2) and therefore more
prone to overfit the solutions to the specific training set of matching scores.

Solving the hybrid fusion using the ROCs, instead of the matching scores,
not only preserves the simplicity of the method, but also makes the solution
more robust to the deviations between the training and testing scores. We
summarize the hybrid fusion method as follows:

1. Given a set of component matching scores, and a set of score-level fusion
methods.

2. (Training) Derive individual ROCs from the component matching scores
and the score-level fused matching scores. Fuse all the ROCs under the
fusion framework by the AND rule (5.2) or OR rule (6.18), and obtain the
optimal combination of operation points.

3. Obtain the thresholds corresponding to those optimized operation points.

4. (Testing) Apply the trained thresholds on the component matching scores
the score-level fused matching scores, and fuse the decisions by the AND
rule or OR rule as the final decision.

So far we have introduced the general hybrid fusion of multiple classifiers.
Fig. 6.6 gives an example of the diagram of the hybrid fusion between two
component classifiers. In this framework, the LLR based decision-level fusion is
combined with the OR rule decision level fusion.

6.5 Experiments and Results

With the proposed optimal LLR based fusion, we combine the two-dimensional
face texture and three-dimensional face shape information for improved face
recognition performance. The context of this work is the EU FP6 3D-Face
project [1], which aims to achieve reliable biometric authentication using the
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face in its two-dimensional and three-dimensional modalities. The first database
that the face recognition algorithms were developed on is the FRGC database
[124], which contains the 2D face texture and 3D face shape data collected
simultaneously. The database contains data of 465 subjects and has in total
4,007 samples. The classifiers that produce the matching scores are trained on
309 subjects in the database. To train fusion, another 100 subjects are taken to
obtain the matching scores from the trained classifier, resulting in 25,520 genuine
scores and 2,568,190 impostor scores (fusion training data). The remaining 56
subjects are used for evaluation, resulting in 12,270 genuine scores and 700,910
impostor scores (fusion testing data). In all the following experiments, we train
the mapping by the fusion training data, and evaluate on the fusion testing
data.

For either modality, the matching scores are derived and provided by L-1
Identity Solutions (L1), Cognitec Systems (COG), and the University of Twente
(UTW). In the L-1 method, the matching scores are computed using the hier-
archical graph matching (HGM) methods [69], which represents the facial ge-
ometry by means of a flexible grid. Similar to the biological structures in the
human brain, a set of specific filter structures is assigned to each node of the
graph and analyzes the local facial characteristics [70] [184]. With HGM, ap-
proximately 2,000 characteristics are used to represent a face and an individual
identity. For the analysis of a face, the shape (”landmarks”) and the structure
(”features”) of the face are separated, making HGM a very robust facial recog-
nition method providing a basis for both 2-D and 3-D face recognition. In the
COG method, for 2D faces, the feature components are retrieved by applying
local image Gabor transforms at facial feature locations. These component are
then concatenated to form the raw 2-D face feature vector. For 3-D faces, the
face shape is firstly registered and smoothed to form the raw 3-D face feature
vector. Global transformations are applied on the raw feature vectors in both
cases, in order to maximize the ratio of inter-personal variance to intra-personal
variance [108]. The final scores are obtained by simple similarity measures of
the transformed feature vectors. In the UTW methods, holistic approach is
taken, and the feature vectors are derived by the conventional PCA and LDA
transformation, and the scores are computed as the likelihood ratio of the fea-
ture vector in the feature space. More details of the mathematics can be found
in [6].

We applied the proposed LLR based fusion, and the hybrid fusion of the
LLR based score-level fusion and OR rule decision-level fusion on the biometric
scores, as illustrated by Fig. 6.6. Comparison of the performance is done with
the following three other fusion methods:
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1. Sum Rule
Before applying the sum rule, the scores are transformed using the Z-
normalization [133], which normalizes the genuine or impostor scores to
unit variance.

2. Likelihood Ratio by GMM
The joint density of the matching scores is firstly estimated using Gaus-
sian mixture models (GMM) [51], using the method in [129]. Then the
likelihood ratio is calculated based on the estimation of both genuine and
impostor score distributions.

3. SVM
Taking the concatenated component matching scores as a feature vector,
we use SVM to do the classification. The decision boundary is trained
using the radius basis function (RBF) kernels [30]. The scores are firstly
Z-normalized with a variance of 1, and the RBF radius is chosen as 1.
Implementation details can be found in [77].

For the purpose of comparison, we have calculated the full ROC, i.e., all
the possible operation points, instead of a single operation point, to present the
fusion performance on the entire range of α. We will show the fusion between
the two modalities, and visualize the decision boundaries of different fusion
methods in the two-dimensional matching score space, to give a clear view of
how the methods work.

We show three representative examples of the 2D texture and 3D shape
fusion. Fig. 6.7, Fig. 6.9, Fig. 6.11 illustrate the decision boundaries of different
fusion methods, and Fig. 6.8, Fig. 6.10, Fig. 6.12 show the performance with
respect to the ROCs. Note that the scatter plots of the matching scores in Fig.
6.7, Fig. 6.9, Fig. 6.11 are those of the training set, showing the fitting of the
training of different fusion methods. In Fig. 6.8, Fig. 6.10, Fig. 6.12, (a) is
the ROC of the trained fusion on the training data itself, while (b) is the ROC
of the trained fusion on the testing data. The differences between the original
ROCs (ROC1 and ROC2) in (a) and those in (b) indicate the discrepancies of
the training and testing data distributions. The discrepancies is the underlying
reason why we seek for smooth mapping l(s) by least square solutions.

It can be observed from the figures that the simple sum rule with Z-score nor-
malization is the weakest, and the other four advanced fusion methods, namely,
SVM, LLR by GMM estimation, LLR by fitting, and hybrid fusion, all yield
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better performances. In the training, the four advanced methods produce close
ROCs, indicating good fitting to the score data. In the testing, however, some
difference are shown, indicating different capabilities for generalization. For ex-
ample, it can be observed that in Fig. 6.10, our proposed method outperforms
the LLR by GMM method, especially in the testing. Furthermore, the hybrid
fusion based on the proposed LLR fusion yields even better performances in
general.

The LLR by GMM estimation is the theoretically optimal fusion method, if
we look at fusion from a classification point of view [132]. It uses the optimal
LLR statistic and taking into consideration of the dependencies between the
component scores. The GMM estimation from the scores, and the subsequent
LLR calculation from the estimated densities, however, is much more expensive
in computation than our direct mapping from the scores to their LLR values.
Moreover, due to its many parameters to estimate and the limited number of
training sample, the GMM estimation is likely to overfits the training data.

It can be observed that the decision boundaries produced by the sum rule
are often under-trained, while those produced by the SVM and the LLR by
GMM estimation are often over-trained, especially when there are outliers, i.e.,
extraordinary samples, in the training data. Consequently, the decision bound-
aries produced by SVM and GMM are likely to be overfitted due to the freedom
offered by the classifier parameters. In comparison, the decision boundaries
yielded by the proposed LLR by fitting is both robust and flexible, giving sim-
ple decision boundaries smoothly adapted to the score distributions.

Theoretically speaking, the mapping from the matching scores to the LLR
values is a strictly monotonically increasing function. From this aspect, our
method is particularly plausible, because this property has been guaranteed by
using monotonic functions in the fitting. In the SVM or GMM method, however,
this property is not guaranteed as they can still produce decision boundaries
that violate the monotonicity, e.g. closed boundaries. In other words, the
SVM or GMM methods are general classification models, which cannot take
into consideration the special monotonic property of the matching scores. The
merit of our method, therefore, lies in its simplicity by nature, because the
key step of fitting of such a monotonic function l(s), is low in complexity, as
shown in Fig. 6.4 (a) (b), and Fig. 6.5 (a) (b) even when the distributions
are complicated and unconventional. As a result, the LLR estimation by fitting
the l(s) function is simpler, and can be more reliably done, than estimating the
probability densities or finding the support vectors. Moreover, the complexity
of such a fitting, and hence the complexity of the resulting decision boundary,
can be easily controlled by allowing different levels of freedom (i.e. parametric
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forms) on the fitting curves.
The drawback of our method lies in the independency assumption of the

LLRs, and this explains why our method is sometimes outperformed by the
GMM method. Nevertheless, this is not a serious problem in many biometric
fusion applications. Firstly, different biometrics are very likely to be indepen-
dent if they are acquired from different physical modalities. Secondly, even if
the absolute values of the joint LLR, as calculated in (6.5), are not estimated
accurately, the relative values of the joint LLR, i.e., the amplitude relationship
between the LLR values in the score field, can still be correct. Analogy can
be made to the Naive Bayes classifier [44] [187] [43]. Furthermore, incorpo-
rated with the hybrid fusion, the proposed LLR based fusion can yield further
improved performances.

6.6 Summary

In this chapter we have proposed an optimal likelihood ratio based fusion
method of biometric scores. The biggest merit of our method is that the solu-
tion is LLR-based, but the complicated, and often inaccurate, estimate of the
genuine and impostor score probability density functions are avoided. Instead
of calculating the LLR from the two estimated densities, we map the matching
score s directly to its LLR value via the ROC. The complexity, difficulty, and
inaccuracy involved for density estimation are thus avoided.

Parametric fitting is used to reliably estimate the derivative on the ROC,
resulting in the mapping from a certain score to its corresponding likelihood
ratio. Consequently, a number of discrete points in the score-likelihood ratio
space are obtained. Then the continuous score-to-likelihood-ratio mapping is
obtained by a second parametric fitting, which smoothly connects the set of
discrete points obtained from the previous step. The fitting strategies of the
mapping, piecewise polynomial fitting, make the function very robust to possible
noise or outliers in the training scores, and flexible to arbitrary matching score
distributions. We presented the mathematics, and show how robustness and
flexibility are acquired by the mapping strategies.

We compared our methods with other popular score-level fusion methods,
especially with the likelihood ratio method using density estimation by Gaussian
Mixture Models. Simplicity and robustness are demonstrated for our method
under a large range of score distributions.

Under the optimal decision-level fusion framework proposed in Chapter 5
and taking advantage of the score-level fusion in this chapter, we further pro-
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posed an interesting hybrid fusion scheme, which combines both decision level
fusion and score level fusion. The score-level fusion is advantageous in the sense
that it is able to take care of the arbitrary score distributions, while the decision-
level fusion is beneficial when there are outliers in the matching scores, which
part cannot be accounted by probability distribution functions. Consequently,
further improved performance over the LLR-based fusion can be achieved. Ex-
periments show that in different cases, with different matching score distribu-
tions, the hybrid fusion method is able to adapt for improved performance over
the two levels of fusion.
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Figure 6.4: (a) Mapping l(s) of the first score using second order polynomial;
(b) Mapping l(s) of the second score using second order polynomial; (c) Score
distribution and the decision boundaries; (d) ROCs of the individual scores and
of the optimal LLR fused scores.
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Figure 6.5: (a) Mapping l(s) of the first score using piecewise polynomial; (b)
Mapping l(s) of the second score using piecewise polynomial; (c) Score distri-
bution and the decision boundaries; (d) ROCs of the individual scores and of
the optimal LLR fused scores.
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Figure 6.6: The diagram of hybrid fusion for two component classifiers.
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(a) (b)

(c) (d)

Figure 6.7: Fusion of the COG texture data and COG shape data: (a) Decision
boundaries of the sum rule fusion with Z-normalization; (b) Decision bound-
aries of SVM fusion; (c) Decision boundaries of LLR fusion based on GMM
estimation; (d) Decision boundaries of LLR fusion by fitting the l(s) function,
proposed in this chapter.
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Figure 6.8: Fusion results of the COG texture data and COG shape data: (a)
ROCs of the training set. (b) ROCs of the testing set. The fusion parameters
are trained on the training set.
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(a) (b)

(c) (d)

Figure 6.9: Fusion of the UTW texture data and COG shape data: (a) Decision
boundaries of the sum rule fusion with Z-normalization; (b) Decision bound-
aries of SVM fusion; (c) Decision boundaries of LLR fusion based on GMM
estimation; (d) Decision boundaries of LLR fusion by fitting the l(s) function,
proposed in this chapter.
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Figure 6.10: Fusion results of the UTW texture data and COG shape data:
Fusion results of the UTW texture data and COG shape data: (a) ROCs of the
training set. (b) ROCs of the testing set. The fusion parameters are trained on
the training set.
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(a) (b)

(c) (d)

Figure 6.11: Fusion of the L1 texture data and UTW shape data: (a) Decision
boundaries of the sum rule fusion with Z-normalization; (b) Decision bound-
aries of SVM fusion; (c) Decision boundaries of LLR fusion based on GMM
estimation; (d) Decision boundaries of LLR fusion by fitting the l(s) function,
proposed in this chapter.
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Figure 6.12: Fusion results of the L1 texture data and UTW shape data: (a)
ROCs of the training set. (b) ROCs of the testing set. The fusion parameters
are trained on the training set.
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Chapter 7

Summary and Conclusions

7.1 Summary

In this thesis, we presented a detailed study of the face verification problem on
the mobile device, covering every component of the system, as shown in Fig. 7.1.
The study includes face detection, registration, normalization, and verification.
Furthermore, the information fusion problem is studied to verify face sequences,
and to fuse different modalities. Although the work is application-specific, the
thesis is not limited to the application, but more extensive. In every step, we
have justified the methods we choose both from the theoretical and the practical
point of view. In the review part of each chapter, we discussed principles and
methodologies on a higher level, for a better understanding of the problems in
general. In our solutions, on the other hand, we have taken care of the appli-
cation requirements, and put much emphasis on the efficiency and simplicity of
the methods.

The face detection is done by the Viola-Jones method, which is fast in de-
tection because of its easily scalable features and the cascaded structure. As
introduced in Chapter 2, most of the effort is spent on the training stage for
selecting the pool of Haar-like features and their corresponding weights. Once
the training is done, these parameters can be fixed into the hardware device
once and for all, and can be applied to any user as thanks to the robustness of
the method.

For face registration, we proposed to first detect the facial landmarks, and
then registrate the face to a standard orientation and scale. We trained 13 facial
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Figure 7.1: Diagram of the face verification system.

feature detectors by the specially tuned Viola-Jones method as presented in
Chapter 2. A major problem in landmark-based registration is the unavoidable
falsely detections. For this purpose, we proposed a very fast post-selection
strategy, based on the error occurring model, which is accurate and specific to
the detection method as well as to the objects. The proposed post-selection
strategy does not introduce any statistical model or iteration step, instead, it
only relies on the scale information and operates only once. Compared to many
other registration methods that incorporate more complicated shape or texture
models, and introduce iterative convergence, the method is very fast even on a
mobile device.

For the illumination normalization problem, we discard the three-dimensional
modeling methods, which are not only complicated in computation, but also too
delicate to generalize to many scenarios. Instead, we implemented the simple
and efficient two-dimensional preprocessing methods. As introduced in Chapter
4, the two illumination insensitive filters we proposed are the Gaussian deriva-
tive filter in the horizontal direction and the simplified local binary pattern as a
filter. The two methods, especially the later, are computationally low-cost, and
meanwhile exhibit a high degree of insensitivity to illumination variations. The
implementation of the simplified local binary pattern is extremely fast.

In the verification stage, we proposed to use the likelihood ratio based classi-
fier, which is statistically optimal in theory, and easy to implement in practice.
On the mobile device, the enrolment can be done by taking a video sequence
of several minutes. Above all, the method is chosen because the verification
problem has a largely overlapping distribution of the classes, and therefore can
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be better solved by density-based methods than boundary-based methods. In
Chapter 3, we have investigated the influence of various dimensionality reduc-
tion methods on the verification performance, and observed that using the full
dimensionality of the properly reduced image is more beneficial than learning
the dimensionality reduction from a large image. Besides, we have also com-
pared the single Gaussian model and the Gaussian mixture model, and proved
that the former has better performance, lower complexity, and higher general-
ization capability. Consequently, the verification measure, the likelihood ratio,
can be reduced to the differences between two squared Mahalanobis distances.
The computation involves only linear matrix manipulations and the complexity
is low.

To achieve as good performance as possible, we fused the information in the
time domain, i.e., the decisions from multiple face frames from a time sequence
are fused. To do this, we studied the information fusion problem in Chapter
5 and Chapter 6, and proposed the threshold-optimized decision-level fusion,
LLR-based score-level fusion, and hybrid fusion. The decision-level fusion is
suitable for the situation in our system, because in theory we have proved that
fusing identical classifiers does not even need the training. Furthermore, the
proposed OR rule fusion is very suitable for the scenario when outlier data
exist in the user class. This gives more accommodation to the user’s poses and
expressions, thus benefiting the user-friendliness form a system point of view.
All the fusion methods are also successfully applied to the 3D-Face project,
yielding good performance for fusing the two-dimensional face texture and three-
dimensional face shape data.

The main contributions of the thesis are listed in the following:

• We extended the work of Viola and Jones on face detection to the detection
of more unstable and vague objects: facial features. Novel error models
are built up, circumventing the more complicated statistical shape models.
Fast and robust facial feature detectors are built up based on this model.

• We gave some insight into the face detection and recognition problems,
which share important common parts of feature extraction and classifier
design, but differs substantially in class distributions. The unbalanced
prospects of FAR and FRR are studied in the context of likelihood ratio
based verification.

• We proposed to pursue illumination insensitivity, instead of invariance, of
the face images using simple preprocessing methods. We proposed two
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illumination-insensitive filters, namely, the Gaussian second-order deriva-
tive filter and the simplified LBP filter, and justified the proposed methods
under the likelihood ratio based verification framework.

• An interesting decision-level fusion method based on optimizing the ROC
operational points is proposed. With this method, we do not have to
deal with the large number of matching scores, but work on the operation
points on the ROC. The optimization is in the Neyman-Pearson sense.
The method is especially suitable for verification problem with outliers.

• A statistically optimal score-level fusion is proposed which is able to avoid
the complicated, and often inaccurate, density estimation. The method
maps the scores directly to their corresponding likelihood ratios, via the
ROC. The method is robust and flexible thanks to the parametric fitting
strategies we used.

• Under the optimal decision-level fusion framework, we proposed a hybrid
scheme combining decision-level and score-level fusion, which takes advan-
tage of both fusion modes. The score-level fusion takes care of the arbi-
trary probability distribution functions of the matching scores, while the
decision-level takes care of the outliers, which part cannot be accounted
by probability distribution functions. As a result, the hybrid fusion yields
even improved performance over both.

7.2 Hardware Implementation

The efficiency and simplicity every step as shown by Fig. 7.1 enables realistic
implementation of this system on a MPD. We chose the Eten M500 Pocket PC
as a demonstrator, and transformed our algorithms that are written in the C
language onto the Windows Mobile 5 platform of the device. We used the Intel
OpenCV library [73] to facilitate the implementation of many functions.

In the initial trial, due to the limitation of the power and computation
capability of the current mobile device, we still do the enrolment on the PC: the
MPD takes a sequence of the user images of about 2 minutes and transfers them
to the PC to process them, with the user mean and covariance extracted for
calculating the Mahalanobis distance in the user class. The background mean
and covariance have been pre-stored in the mobile device for calculating the
Mahalanobis distance in the background class. Once the enrolment is finished,
the mobile device are ready to use. The user image sequences then pass through
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the diagram in Fig. 7.1 till the final decision of accept or reject is made. The
implementation of the system in the project framework has been reported in
[41].

Even without optimization, our system has already achieved a frame rate of
around 10 frames per second on the current laptop with Intel(R) CPU, 1.66GHz,
2GB of RAM. On the mobile device, with the Samsung S3C2440 400Mhz Pro-
cessor and 64MB of SDRAM, the time is substantially longer, about 8 seconds a
frame. Profiling of the system indicates that the face detection and registration
are still the most time-consuming part, while the illumination normalization and
likelihood ratio based verification are extremely fast. This system will become
practical in use with further optimization both in hardware and software [41].

From a hardware point of view, there are several things of interest to try in
the future. As a commercial attraction, nowadays the face detector has been
implemented on some small electronic devices like the digital camera. This im-
plies that the Viola-Jones face detector in the mobile system, which is much
faster than we have now, is feasible if careful optimization is made in the im-
plementation. For example, the selected Haar-like features can be calculated by
specially mapped integrate circuits and facilitate much faster detection. In the
same manner, even faster facial feature detectors in our optimized form are also
realizable with pre-trained parameters and the fast post selection strategy. As
pointed out in Chapter 2, our method enables a stand-alone facial feature detec-
tor. From that on, all the subsequent calculation are simple enough, involving
only linear manipulations and comparisons.

Under harsh situations, like very dark or bright weather, the illumination
might still cause problem for the verification. A more fundamental way to solve
this problem is to use an alternative hardware camera, which is itself insensitive
to illumination. For example, an infrared camera is interesting for this purpose
as it is invariant to the visible lights.

A more intelligent system is achievable if more than one templates (i.e.,
mean and covariance) of the user are stored over time. That means the user
can enrol the device at different time, under diverse scenarios, and store all
the user information into the device. In operation, the device then do fusion
on the decisions or matching scores from multiple verification results. The time
information of the enrolment can be used as a weighting or forgetting parameter
in fusion. In this process, the generalization capability of the verification system
increases, so care must be taken not to degrade the discrimination capability
at the meantime. In theory, this is possible as we are operating in a high
dimensional space which possesses sufficient discrimination power.
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7.3 Conclusions

Face verification on the mobile device provides a secure connection between the
user and the personal network. In this thesis, we have proposed the solution
for this face verification system, including face detection, registration, illumi-
nation normalization, verification, and fusion. Besides the high computational
efficiency, the current system exhibits robustness to considerable face variabil-
ity that is possible to occur in the face verification scenario. As the example
given in Fig. 5.9, under the difficult test protocol in which the training and
testing data are taken under completely different illuminations, with variations
in expressions and poses, a detection rate of 75% can be achieved at the low
false accept rate of 0.1%. With fusion between the time frames, the detection
rate can reach 95% at the same false accept rate (see Fig. 5.9 (d)). When the
illumination of the testing are same or similar to that of the training, the gener-
alization is more easily done, and the system can reach an even higher detection
rate.

The system has dealt with the security, convenience, and complexity require-
ments, which are put forward in Chapter 1. As discussed in Chapters 3 and
4, we verify the input pattern in a high-dimensional space, which is in theory
sufficiently discriminative and guarantees security. For the user convenience, a
low false rejection rate is essential, and this has been taken care of by the illu-
mination normalization and the decision fusion. The time-sequence verification,
furthermore, not only improves security, preventing the scenario that the device
is taken away after being logged-on, but also increases the user-convenience by
lowering the false rejection rate with the fusion rule. Finally, the algorithmic
complexity has always been an important concern of our work, and the system
has been successfully implemented on the mobile device with limited computa-
tional resources.

Apart from the face verification system on the mobile device in the PNP2008
project, the work has been further extended to the fusion of different face modal-
ities in the European FP6 3D Face project. We have carried out a thorough
study on fusion at different levels of the biometrics system, and proposed efficient
fusion schemes respectively at the decision level, score level, and a combination
of both. As can be observed from Fig. 5.10 - 5.14 and Fig. 6.10 - 6.12 in
Chapters 5 and 6, the performance of the original system has be improved sub-
stantially even at a very low false acceptation rate. In this context as well as
many other biometric applications, the integration of multiple biometrics is of
great interest to achieve a more secure, reliable, and robust system.
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Samenvatting

In dit proefschrift, presenteren wij een gedetailleerd onderzoek naar gezichtsver-
ificatie op een mobiele telefoon of PDA, waarin we alle componenten van het
systeem zullen behandelen. Ons onderzoek omvat gezichtsdetectie, gezichtsreg-
istratie, gezichtsnormalisatie en gezichtsverificatie. Daarbij, hebben we ook nog
voor opeenvolgende opnamen van gezichten gekeken naar het combineren van
informatie uit deze opnamen ten behoeve van gezichtsverificatie. Ondanks dat
ons werk applicatiespecifiek is, bevat het proefschrift algemenere oplossingen,
die niet alleen gelden voor onze applicatie. We hebben alle gebruikte methoden
verantwoord vanuit theoretisch en praktisch oogpunt. In het overzicht van elke
hoofdstuk, bekijken we de principes en methodologie op een hoger niveau om de
algemene problemen beter te snappen. Onze oplossingen voldoen aan de eisen
die gesteld werden door de applicatie, waar het accent op effectieve en simpele
methoden ligt.

De gezichtsdetectie wordt gedaan door de Viola-Jones methode, die snel is
omdat deze methode meeschalende features en een cascade structuur gebruikt.
In Hoofdstuk 2 laten we zien dat meeste inspanning in het trainen van deze
methode gaat zitten, waarbij een set van zogenaamde ’Haar’ features en cor-
responderend gewichten geselecteerd wordt. De instellingen, die gevonden zijn
tijdens de training, kunnen worden overgenomen in hardware en worden gebruik
voor elke gebruiker omdat de Viola-Jones methode zeer robuust is.

Voor het registreren van een gezicht, detecteren we eerst ’landmarks’ (ori-
entatiepunten in het gezicht) en daarmee registeren we het gezicht naar een
standaard ori?ntatie en schaal. We hebben voor 13 ’landmarks’ special geopti-
maliseerde Viola-Jones detectoren (Hoofdstuk 2) getraind. Een groot probleem
in landmark gebaseerde registratie zijn de false detecties. Daarom hebben we
een snelle extra strategie voorgesteld, die door middel van een model foute land-
marks detecteert en verwijdert. Deze voorselectie strategie maakt geen gebruik
van een statistisch model of iteratieve stappen. In vergelijking met ander regis-
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tratie methoden die ingewikkelde modellen van vorm en textuur maken is onze
methode erg snel, zelfs op de simpele processor van een mobiele telefoon.

Voor de belichtingsnormalisatie, hebben we geen drie dimensionale modellen
waar veel rekenkracht voor nodig is en die moeilijk generaliseren gebruikt. In
plaats daarvan hebben we simpele en effectieve twee dimensionale preprocessing
methoden gebruikt. In Hoofstuk 4, worden door ons twee belichting ongevoelige
filters voorgesteld, namelijk filteren met de afgeleide van de Gaussian in horizon-
tale richting en ’simplified local binary patterns’. De twee methoden, vooral de
tweede, gebruiken weinig rekentijd, terwijl ze een hoge graad van ongevoeligheid
onder verschillende belichtingsvariaties demonstreren.

In de verificatiefase, gebruiken we de ’likelihood ratio’ methode, die in theo-
rie statistische optimaal moet zijn en in praktijk gemakkelijk te implementeren
is. We kunnen op de mobiele telefoon een gebruikerstemplate aanmaken door
een video te maken van een paar minuten. We hebben voor deze methode
gekozen omdat er bij de verificatie van gezichten een grote overlap tussen die
kansdichtheden van verschillende gezichten is, waarbij deze methode het beste
werkt. In Hoofdstuk 3, hebben we de effecten van het reduceren van het aan-
tal features waarmee gezichten worden gemodelleerd onderzocht en we hebben
geobserveerd dat we beter gebruik kunnen maken van alle features van een gere-
duceerde afbeelding dan dat we een feature reducerende functie toepassen voor
grotere afbeeldingen. Daarnaast hebben we een vergelijking getrokken tussen
een Gaussian model en een Gaussian mixture model, waarvan de eerst een betere
prestatie leverde, minder complex was en beter kon generaliseren. Daarnaast
blijk dat de likelihood ratio als verificatie afstand kan worden teruggebracht
naar het verschil tussen twee Mahalanobis afstanden. De berekening hiervan
betref alleen maar lineare matrix berekeningen en de complexiteit daarvan is
laag

Om een zo goed mogelijk resultaat te halen, combineren we de informatie
in het tijddomein. Met andere woorden: de beslissingen die gemaakt zijn per
beeld dat een gezicht bevat worden gecombineerd. Om dit te doen hebben
we in Hoofdstuk 5 en 6, het combineren van informatie bestudeerd en stellen
we daartoe 3 methoden: ’threshold-optimized decision-level fusion’, ’LLR-based
score-level fusion’ en ’hybrid fusion’ voor. Decision-level fusion is bruikbaar in
ons systeem, omdat we in theorie hebben bewezen dat voor het combineren van
dezelfde beslissers er geen training nodig is. Daarnaast is de voorgestelde ’OR
rule fusion’ goed bruikbaar in scenario’s waarin veel grote fouten voorkomen.
Dit maakt ons systeem robuuster tegen variaties van expressies op gezichten en
gezichten die onder een hoek naar de camera kijken, wat de gebruikersvriendeli-
jkheid van ons systeem ten goede komt. Alle fusion methoden zijn ook succesvol
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gebruikt in het 3D-Face project, waarin twee dimensionale gezichtsafbeelding
met de drie dimensionale vorm van het gezicht werden gecombineerd.
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